Majör Depresyonun Tedavisinde ve Etyolojisinde Yeni Umutlar, Yeni Ufuklar: MikroRNA'lar

Depresyon oldukça sık görülen ve yeti yitimine nedenolan bir hastalıktır. Bu güne kadar yapılan birçok çalışmayarağmen halen nörobiyolojisi tam olarak aydınlatılabilmişdeğildir. MikroRNAlar yaklaşık 22 nükleotid uzunluğundaolup çoğunlukla mRNAlardan protein sentezini çeşitliaşamalarda engelleyerek işlev görürler. Daha öncede çöpRNAlar olarak bilinen bu yapılar şu an tam da bahsettiğimiz kritik noktada bulunmakta ve birçok hastalık için araştırmacıların ilgi noktası haline gelmektedir. Farmakolojikve biyolojik tedavilerin hedefi olduğunun gösterilmişolmasının yanı sıra gerek hayvan modelleri gerekse deperiferik kan ve post-mortem beyin çalışmaları mikroR- NAların depresyondaki önemini giderek perçinlemektedir.

MicroRNAs as a new hope for depression

Depression is a common and debilitating illness. Althougha great deal of research has been done in the area, itsneurobiology remains unclear. MicroRNAs are 22 nucleo- tides long and usually prevent protein synthesis frommRNAs at several stages. Now it is clear that microRNAsplay a key role in the pathophysiology of many diseases.They have the potential to regulate the expression of morethan 10,000 genes. Thus, microRNAs have been widelyinvestigated as they relate to both medical and psychiatricdisorders. For major depression, microRNAs are targetsfor both pharmacological and biological treatments, dis- regulated in animal models of depression and the brainsof depressed people, and are candidate biomarkers fordepression.

___

  • 1. Blazer DG, Kessler RC. The prevalence and distribution of major depression in a national community sample: the National Comorbidity Survey. Am J Psychiatry. 1994;15:24-7.
  • 2. Kendler KS, Karkowski LM, Prescott CA. Causal Relationship Between Stressful Life Events and the Onset of Major Depression. Am J Psychiatry. 1999;156:837-41.
  • 3. Kendler KS, Karkowski-Shuman L. Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? Psychol Med. 1997;27:539-47.
  • 4. Andreasen NC. Linking Mind and Brain in the Study of Mental Illnesses: A Project for a Scientific Psychopathology. Science. 1997;275:1586-93.
  • 5. Dolan RJ, Bench CJ, Liddle PF, Friston KJ, Frith CD, Grasby PM, Frackowiak RS. Dorsolateral prefrontal cortex dysfunction in the major psychoses; symptom or disease specificity? J Neurol Neurosurg Psychiatry. 1993;56:1290-4.
  • 6. McEwen BS. Effects of adverse experiences for brain structure and function. Biol Psychiatry. 2000;48:721-31.
  • 7. Moreno FA, Rowe DC, Kaiser B, Chase D, Michaels T, Gelernter J, Delgado PL. Association between a serotonin transporter promoter region polymorphism and mood response during tryptophan depletion. Mol Psychiatry. 2002;7:213-6.
  • 8. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature. 2002;416:396-400.
  • 9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
  • 10. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.
  • 11. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005:123:631–40.
  • 12. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–6.
  • 13. Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, et al. MicroRNA silencing through RISC recruitment of eIF6. Nature. 2007;447: 823–8.
  • 14. Smalheiser NR, Lugli G. microRNA regulation of synaptic plasticity. Neuromolecular Med. 2009;11:133–40.
  • 15. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Correction: Human MicroRNA Targets. PLoS Biol 3: Public Library of Sciencee 264.
  • 16. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci. 2004;7:113-7.
  • 17. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell. 2006;124:191-205.
  • 18. Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil S V, Russo JJ, et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63:803-17.
  • 19. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:283-9.
  • 20. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng H-YM, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci. 2008;105:9093-8.
  • 21. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci. 2005;102:16426-31.
  • 22. Baudry A, Mouillet Richard S, Schneider B, Launay JM, Kellermann O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329:1537-41.
  • 23. O’Connor RM, Grenham S, Dinan TG, Cryan JF. microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol. 2013;16:1885-92.
  • 24. Ryan KM, O’Donovan SM, McLoughlin DM. Electroconvulsive stimulation alters levels of BDNF-associated microRNAs. Neurosci Lett. 2013;549:125-9.
  • 25. Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res. 2007;38:247-52.
  • 26. Kim Y-K, Lee H-P, Won S-D, Park E-Y, Lee H-Y, Lee B-H, et al. Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuro-Psychopharmacology Biol Psychiatry. 2007;31:78-85.
  • 27. Rong H, Liu TB, Yang KJ, Yang HCHZ, Wu DH, Liao CP, et al. MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res. 2011;45:92-5.
  • 28. Lai C-Y, Yu S-L, Hsieh MH, Chen C-H, Chen H-Y, Wen C-C, et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One. 2011;6(6):e21635.
  • 29. Shi W, Du J, Qi Y, Liang G, Wang T, Li S, et al. Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res. 2012;46:198- 204.
  • 30. Belzeaux R, Bergon a, Jeanjean V, Loriod B, Formisano-Tréziny C, Verrier L, et al. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry. 2012;2:185.
  • 31. Oved K, Morag A, Shomron N, Rehavi M, Stingl JC, Gurwitz D. Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics. 2012;13:1129-39.
  • 32. Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D, et al. Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol. 2013;23.602-11.
  • 33. Li Y-J, Xu M, Gao Z-H, Wang Y-Q, Yue Z, Zhang Y-X, et al. Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One. 2013:21;8:e63648.
  • 34. Camkurt MA. Major Depresif Bozuklukta MikroRNA Düzeyleri, Uzmanlık Tezi, Mersin Üniversitesi Tıp Fakültesi Psikiyatri Ana Bilim Dalı.
  • 35. Liu X, Zhang L, Cheng K, Wang X, Ren G, Xie P. Identification of suitable plasma-based reference genes for miRNAome analysis of major depressive disorder. J Affect Disord. 2014;163:133-9.
  • 36. Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z, et al. A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J Affect Disord. 2010;127:332–6.
  • 37. Jensen KP, Kranzler HR, Stein MB, Gelernter J. The effects of a MAP2K5 microRNA target site SNP on risk for anxiety and depressive disorders. Am J Med Genet B Neuropsychiatr Genet. 2014;165:175-83.
  • 38. Mendlewicz J. Disruption of the Circadian Timing Systems: molecular mechanisms in mood disorders. CNS Drugs. 2009;23:15- 26.
  • 39. Cheng H-YM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, et al. microRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54:813-29.
  • 40. Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282:25053-66.
  • 41. Saus E, Soria V, Escaramís G, Vivarelli F, Crespo JM, Kagerbauer B, et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet. 2010;19:4017-25.
  • 42. Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C, et al. Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res. 2010;208:265-9.
  • 43. Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D. Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci. 2010;40:47-55.
  • 44. Uchida S, Nishida A, Hara K, Kamemoto T, Suetsugi M, Fujimoto M, et al. (2008): Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA- mediated down-regulation of the glucocorticoid receptor. Eur J Neurosci. 2008;27:2250-61.
  • 45. Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik VI, Pandey GN, et al. (2011): MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol. 2011;14:1315-25.
  • 46. Smalheiser NR, Zhang H, Dwivedi Y. Enoxacin Elevates MicroRNA Levels in Rat Frontal Cortex and Prevents Learned Helplessness. Front psychiatry. 2014;5:6.
  • 47. Ağargün MY, Kara H, Solmaz M (1997): Sleep disturbances and suicidal behavior in patients with major depression. J Clin Psychiatry. 1997;58(6):249-51.
  • 48. Ağargün MY, Kara H, Solmaz M. Subjective sleep quality and suicidality in patients with major depression. J Psychiatr Res. 1997;31:377-81.
  • 49. Mann JJ. Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology. 1999;21:99S-105S.
  • 50. Lopez JP, Fiori LM, Gross JA, Labonte B, Yerko V, Mechawar N, Turecki G. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int J Neuropsychopharmacol. 2014;17:23-32.
  • 51. Maussion G, Yang J, Yerko V, Barker P, Mechawar N, Ernst C, Turecki G. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS One. 2012:7:e39301.
  • 52. Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One. 2012:7:e33201.
  • 53. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One. 2014;9:e86469.