A Consideration of Antibacterial Agent Efficacies in the Treatment and Prevention of Formation of Staphylococcus aureus Biofilm

Staphylococcus aureus is a Gram-positive bacterium found frequently on a person’s skin and sometimes in their upper respiratory tract. Although regarded primarily as a commensal of the human microbiota S. aureus shows the ability to become an opportunistic pathogen. Hence, it is a common cause of skin and lung infections and of food poisoning. S. aureus forms biofilms, complex communities of bacteria inside an exopolysaccharide matrix, which adhere to different surfaces, including those associated with hospital-acquired infections such as catheters, shunts and other implanted medical devices. In this instance, the presence of proteins adsorbed to the surface of the biomaterial provides a nutrient source for bacterial growth. Due to antimicrobial resistance, use of longstanding antibiotics alone is increasingly an ineffective therapeutic intervention for biofilm-related infections. Therefore, a growing concern is the treatment of medical devices in order to prevent antibiotic resistance associated with routine handling of these items in a healthcare setting. Consequently, several different biotechnological approaches have targeted a practical solution to S. aureus biofilm formation. These include novel antibiotics administered alone or combined with other compounds, application of natural products like enzymes and antimicrobial peptides, and harnessing of nanoparticles and phage therapy. This brief article provides an overview of each of these cutting-edge methods aimed at inhibition of S. aureus biofilms. Development of an effective agent to prevent and treat biofilm formation would represent a significant step forward for infection control of methicillin-resistant S. aureus (MRSA) and other antibiotic-resistant strains that provides a major global public health challenge. J Microbiol Infect Dis 2019; 9(4):167-172.

___

  • 1. Hacioglu M, Haciosmanoglu E, Birteksoz-Tan AS, Bozkurt-Guzel C, Savage PB. Effects of ceragenins and conventional antimicrobials on Candida albicans and Staphylococcus aureus mono and multispecies biofilms. Diagn Microbiol Infect Dis 2019: 114863. 2. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. ‎Nat Rev Microbiol 2004; 2(2): 95-108. 3. Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 2015; 34(5): 877-886. 4. Li X-H, Lee J-H. Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol 2017; 55(10): 753-766. 5. Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 2013; 14(9): 18488-18501. 6. Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018; 4: e01067. 7. Taylor-Robinson A. You scratch my back…the beneficial (and not so beneficial) relationships between organisms. The Conversation. 15 July 2016. Available at: http://theconversation.com/you-scratch-my-back-the-beneficial-and-not-so-beneficial-relationships-between-organisms-57120 8. Lundberg F, Tegenfeldt JO, Montelius L, et al. Protein depositions on one hydrocephalus shunt and on fifteen temporary ventricular catheters. Acta Neurochir 1997; 139(8): 734-742. 9. Clarke SR, Foster SJ. Surface adhesins of Staphylococcus aureus. Adv Microb Physiol 2006; 51: 187-224. 10. Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 2017; 104(3): 365-376. 11. Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Med Chem Comm 2019; 10(8): 1231-1241. 12. Secor PR, James GA, Fleckman P, Olerud JE, McInnerney K, Stewart PS. Staphylococcus aureus biofilm and planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiol 2011; 11(1): 143. 13. Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin HL. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key's for anti-biofilm drug development. Microb Pathog 2018; 123: 339-347. 14. Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13(12): 1499-1516. 15. Parvizi J, Pawasarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KJ. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplasty 2010; 25(6 Suppl): 103-107. 16. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28(3): 603-661. 17. Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations – a review of recent developments in MRSA management and treatment. Crit Care 2017; 21: 211. 18. Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol 2019; 309(1): 1-12. 19. Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. Int J Oral Sci 2014; 7(1): 1-7. 20. Herrmann G, Yang L, Wu H, et al. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis 2010; 202(10): 1585-1592. 21. Majidpour A, Fathizadeh S, Afshar M, et al. Dose-dependent effects of common antibiotics used to treat Staphylococcus aureus on biofilm formation. Iran J Pathol 2017; 12(4): 362-370. 22. Rezaei M, Moniri R, Mousavi SGA, Jabari Shiade M. Prevalence of biofilm formation among methicillin resistance Staphylococcus aureus isolated from nasal carriers. Jundishapur J Microbiol 2013; 6(6): e9601. 23. Saginur R, Stdenis M, Ferris W, et al. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother 2006; 50(1): 55-61. 24. Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms. Materials 2018; 11(12): 2468. 25. Craigen B, Dashiff A, Kadouri DE. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J 2011; 5: 21-31. 26. Pratiwi SUT, Lagendijk EL, Hertiani T, de Weert S, Van Den Hondel CAMJJ. Antimicrobial effects of Indonesian medicinal plant extracts on planktonic and biofilm growth of Pseudomonas aeruginosa and Staphylococcus aureus. J Hortic 2015; 2: 119. 27. Grassi L, Batoni G, Ostyn L, et al. The antimicrobial peptide lin-SB056-1 and its dendrimeric derivative prevent Pseudomonas aeruginosa biofilm formation in physiologically relevant models of chronic infections. Front Microbiol 2019; 10: 198. 28. Raut JS, Karuppayil SM. Phytochemicals as inhibitors of Candida biofilm. Curr Pharm Des 2016; 22(27): 4111-4134. 29. Stentzel S, Gläser R, Bröker BM. Elucidating the anti-Staphylococcus aureus antibody response by immunoproteomics. Proteom Clin Appl 2016; 10(9-10): 1011-1019. 30. Redi D, Raffaelli CS, Rossetti B, De Luca A, Montagnani F. Staphylococcus aureus vaccine preclinical and clinical development: current state of the art. New Microbiol 2018; 41(3): 208-213. 31. Zhou K, Li C, Chen D, et al. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. ‎Int J Nanomed 2018;13: 7333-7347. 32. Liang Z, Qi Y, Guo S, Hao K, Zhao M, Guo N. Effect of AgWPA nanoparticles on the inhibition of Staphylococcus aureus growth in biofilms. Food Control 2019; 100: 240-246. 33. Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP. Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnol 2012; 6(3): 110-114. 34. Gangadoo S, Taylor-Robinson AW, Chapman J. Nanoparticle and biomaterial characterisation techniques. Mater Technol: Adv Biomater 2015. 30(suppl. 5): B44-B56. 35. Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017; 8(3): 162-173. 36. Cha Y, Son B, Ryu S. Effective removal of staphylococcal biofilms on various food contact surfaces by Staphylococcus aureus phage endolysin LysCSA13. Food Microbiol 2019; 84: 103245. 37. Freyberger HR, He Y, Roth AL, Nikolich MP, Filippov AA. Effects of Staphylococcus aureus bacteriophage K on expression of cytokines and activation markers by human dendritic cells in vitro. Viruses 2018; 10(11): 617.