AISI P20 Çeliğinin Sonlu Eleman Frezelemesinde Kesme Kuvveti ve Sıcaklığının Parametrik Optimizasyonu

İmalat sanayinde birden çok imalat yöntemi kullanılmaktadır. En sık kullanılan yöntem talaşlı imalat yöntemleridir. Talaşlı imalat yöntemleri ile hem hammaddeden üretim yapılabilmekte hem de farklı üretim yöntemleri ile üretilen ürünlere bitirme işlemleri uygulanabilmektedir. Ancak talaşlı imalat işlemlerinin başlangıç maliyeti, işlem sırasında kullanılan işleme parametreleri, tezgahın rijitliği ve işleme koşulları gibi faktörler nedeniyle oldukça yüksektir. Günümüzde sonlu elemanlar yöntemi (FEM), işlemenin ilk maliyetini azaltmak için yaygın olarak kullanılmaktadır. Bu nedenle çalışmamızda AISIP20 malzemesinin talaşlı imalatı FEM ile gerçekleştirilmiştir. Bu çalışmada dört farklı kesme hızı, ilerleme ve iki farklı kesme derinliği kullanılmış ve yanal ilerleme sabit tutulmuştur. Çalışma sonucunda işleme parametrelerine bağlı olarak oluşan kesme kuvveti değerleri ve sıcaklık değerleri sonlu elemanlar analizi ile değerlendirilmiştir. Sonuç olarak çalışmada ilerleme, kesme derinliği ve kesme hızı parametrelerinin artmasıyla genel olarak kesme kuvvetinde bir artış, kesme hızı ve ilerlemenin artması ve sabit talaş derinliği ile sıcaklık değerlerinde azalma meydana gelmiştir. En düşük kesme kuvveti 36,11 N, en yüksek kesme kuvveti ise 1951,42 N olmuştur. İşlem sırasında oluşan en düşük ve en yüksek sıcaklık değerleri sırasıyla 448,98 ve 593,14 °C'dir. Bu sayede parametrelerin optimizasyonu için parametreler ile sonlu elemanlar arasındaki orantısal değişim ve istenilen nihai ürün için fiziksel işlemler yapılabilmektedir.

Parametric Optimization of Cutting Force and Temperature in Finite Element Milling of AISI P20 Steel

Multiple manufacturing methods are used in the manufacturing industry. The most commonly used method is machining methods. With machining methods, production can be made from both raw materials and finishing processes can be applied to products produced with different production methods. However, the initial cost of machining operations is quite high due to factors such as the machining parameters used during the process, the rigidity of the machine, and the machining conditions. Today, the finite element method (FEM) has been widely used in order to reduce the initial cost of machining. For this reason, in our study, the machining of AISIP20 material was carried out with the FEM. This study, four different cutting speeds, feed rates and two different cutting depths were used and the lateral feed rate was kept constant. As a result of the study, the cutting force values and temperature values that occurred depending on the machining parameters were evaluated by finite element analysis. Consequently, in the study, an increase in the cutting force occurred in general with the increase of feed, cutting depth and cutting speed parameters, and a decrease in temperature values occurred with an increase in cutting speed and feed and constant cutting depth. The lowest cutting force was 36.11 N, while the highest was 1951.42 N. The lowest and highest temperature values that occur during the process are 448.98 and 593.14 °C, respectively. In this regard, for the optimization of the parameters, the proportional change between the parameters and the finite elements as well as the physical processes can be performed for the desired final product.

___

  • ASTM, 2022. P20 Steel Plate, https://www.astmsteel.com/product/p20-steel-plate-1-2311-3cr2mo-mold-tool-steel/ (Date of access: 05.04.2022)
  • Binali R., Sıcak iş takım çeliğinin (TOOLOX 44) işlenebilirliğinin incelenmesi. Karabük Üniversitesi Fen Bilimleri Enstitüsü, Master Thesis (Printed), 2017.
  • Binali R., Coşkun, M., Neşeli, S., An Investigation of Power Consumption in Milling AISI P20 Plastic Mold Steel By Finite Elements Method. Avrupa Bilim ve Teknoloji Dergisi (34), 513-518, 2022.
  • Binali R., Yaldız, S., Neseli, S., Parametric optimization for machinability parameters of S960QL structural steel during milling by finite elements. Selcuk University Journal of Engineering Sciences 21(1), 26-31, 2022.
  • Binali R., Yaldız, S., Neşeli, S., S960QL Yapı Çeliğinin İşlenebilirliğinin Sonlu Elemanlar Yöntemi ile İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi (31), 85-91, 2021.
  • Chinchanikar S., Choudhury S., Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. Measurement 46(4), 1572-1584, 2013.
  • Demir H., Ulaş H. B., Binali R., Toolox 44 malzemesinde talaş kaldırma miktarının yüzey pürüzlülüğü ve takım aşınması üzerindeki etkilerinin incelenmesi. Technological Applied Sciences 13(1), 19-28, 2018.
  • Galanis N., Manolakos D. E., Finite element analysis of the cutting forces in turning of femoral heads from AISI 316l stainless steel. In Proceedings of the World Congress on Engineering (Vol. 2), 2014.
  • Ghani J. A., Choudhury I., Hassan H., Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology 145(1), 84-92, 2004.
  • Gok K., Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations. Measurement 75, 57-68, 2015.
  • Günay M., Meral T., Korkmaz M. E., AISI 420 Martenzitik paslanmaz çeliğin delinebilirliğinin sonlu elemanlar yöntemiyle analizi. Gazi Mühendislik Bilimleri Dergisi 4(3), 223-229, 2018.
  • Günay M., Yaşar N., Sekmen M., Korkmaz M. E., AISI P20 çeliğinin işlenmesinde kesme kuvvetinin deneysel ve nümerik analizi. Gazi University Journal of Science Part C: Design and Technology 4(1), 13-19, 2016.
  • Korkmaz M. E., Günay M., Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arabian Journal for Science and Engineering 43(9), 4863-4870, 2018.
  • Kuntoğlu M., Acar O., Gupta M. K., Sağlam H., Sarikaya M., Giasin K., Pimenov D. Y., Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140. Machines 9(5), 90, 2021.
  • Kuntoğlu M., Aslan A., Sağlam H., Pimenov D. Y., Giasin K., Mikolajczyk T., Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors 20(16), 4377, 2020.
  • Kuntoğlu M., Sağlam H., Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement 140, 427-436, 2019.
  • Küçüktürk G., Modeling and analyzing the effects of experimentally determined torque and thrust force on cutting tool according to drilling parameters. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 227(1), 84-95, 2013.
  • Li B., Zhang S., Zhang Q., Li L., Simulated and experimental analysis on serrated chip formation for hard milling process. Journal of Manufacturing Processes 44, 337-348, 2019.
  • Ozcelik B., Bagci E., Experimental and numerical studies on the determination of twist drill temperature in dry drilling: A new approach. Materials & Design 27(10), 920-927, 2006.
  • Ozlu B., Ugur L., Optimization of cutting forces on turning of Ti-6Al-4V Alloy by 3D FEM simulation analysis. Journal of Engineering Research and Applied Science 10(2), 1789-1795, 2021.
  • Özel T., Computational modelling of 3D turning: Influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. Journal of Materials Processing Technology 209(11), 5167-5177, 2009.
  • Saglam H., Unsacar F., Yaldiz, S., Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature. International Journal of Machine Tools and Manufacture 46(2), 132-141, 2006.
  • Salur E., Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions. Tribology International 174, 107677, 2022.
  • Salur E., Aslan A., Kuntoğlu M., Güneş A., Şahin Ö., Optimization of cutting forces during turning of composite materials. Acad. Platf. J. Eng. Sci. 8, 423-431, 2020.
  • Shatla M., Kerk C., Altan T., Process modeling in machining. Part I: determination of flow stress data. International Journal of Machine Tools and Manufacture 41(10), 1511-1534, 2001.
  • Ucun İ., Aslantas K., Numerical simulation of orthogonal machining process using multilayer and single-layer coated tools. The International Journal of Advanced Manufacturing Technology 54(9), 899-910, 2011.
  • Usca Ü. A., Uzun M., Kuntoğlu M., Sap E., Gupta M. K., Investigations on tool wear, surface roughness, cutting temperature, and chip formation in machining of Cu-B-CrC composites. The International Journal of Advanced Manufacturing Technology 116(9), 3011-3025, 2021.
  • Zhang J. Z., Chen J. C., Kirby E. D., Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of Materials Processing Technology 184(1-3), 233-239, 2007.
  • Zhang Q., Zhang S., Li J., Three dimensional finite element simulation of cutting forces and cutting temperature in hard milling of AISI H13 steel. Procedia Manufacturing 10, 37-47, 2017.