YSZ Seramik Üst Kaplamaya Sahip Termal Bariyer Kaplamaların (TBCs) Katı Partikül Erozyon (SPE) Davranışlarının İncelenmesi

Gaz türbin motorları servis kullanım koşulları altında farklı birçok hasar mekanizmasına maruz kalmaktadır. Bunlardan birisi de yabancı madde hasarı (FOD) ve diğer yabancı partiküllerin (volkan küller vb.) oluşturduğu yüzey üzerinde meydana gelen hasar yapılarıdır. Bu durumlara bağlı olarak türbin bileşenlerini oluşturan türbin bıçağı ve kanatçık gibi komponentlerde dökülme ve pullanarak kalkma gibi hasar oluşumları meydana gelmektedir. Belirtilen partiküllerin yüksek hızlarda ve farklı açılarda malzeme yüzeyine tekrarlı çarpması sonucunda katı partikül erozyon (SPE) hasarları meydana gelmektedir. Bu çalışmada, Inconel 718 süper alaşım altlık malzeme üzerine CoNiCrAlY bağ ve yitriya ile stabilize edilmiş zirkonya (YSZ) içeriğine sahip seramik üst kaplamalar atmosferik plazma sprey (APS) püskürtme yöntemi kullanılarak üretilmiştir. Üretilen termal bariyer kaplama (TBC) sistemindeki SPE sonucu oluşan mikroyapısal ve yüzey üzerindeki oluşum gösteren değişimler incelenmiştir. SPE testleri alümina (Al2O3) partiküllerinin kullanılmasıyla literatürde yaygın olarak çalışılmayan 25°, 50° ve 75°’lik püskürtme açılarında çalışılmış ve bu açılarda yapılan erozif aşınma testlerinde ortaya çıkan hasar mekanizmaları ve erozif aşınma oranı ayrıntılı olarak incelenmiştir. TBC kaplamalı numunelerde en yüksek erozyon oranı 50°’lik çarpma açısında gerçekleşirken bu değeri sırasıyla 75° ve 25°’lik çarpma açısı takip etmiştir. Çalışmalarda gerçekleştirilen alansal pürüzlülük ölçümlerinde erozyon oranlarının alansal pürüzlülük değerleri ile doğru orantılı olduğu görülmüştür. En yüksek alansal pürüzlülük değerlerinin 50°’lik çarpma açısında oluşum gösterdiği görülmüştür.

Investigation of Solid Particle Erosion (SPE) Behaviors of Thermal Barrier Coatings (TBCs) with YSZ Ceramic Top Coating

Under operating conditions, gas turbine engines are subjected to a wide range of damage mechanisms. One of them is foreign object damage (FOD) and damage structures that occur on the surface formed by other foreign particles (volcanic ash etc.). Depending on these situations, damage formations such as spalling and flaking occur in components such as turbine blades and fins that comprise the turbine components. Solid-particle erosion (SPE) damages occur as a result of the repeated impact of the specified particles on the material surface at high speeds and at different angles. In this study, a CoNiCrAlY bond coat and ceramic top coat with yttria stabilized zirconia (YSZ) content on an Inconel 718 superalloy substrate were produced using the atmospheric plasma spray (APS) spraying method. Microstructural and surface changes resulting from SPE in the produced thermal barrier coating (TBC) system were investigated. Using alumina (Al2O3) particles, SPE tests were done at impact angles of 25°, 50° and 75°, which are not commonly studied in the literature. The damage mechanisms and erosive wear rates that occurred in the tests conducted at these angles were examined in detail. While the highest erosion rate in TBC coated samples occurred at an impact angle of 50°, this value was followed by those of 75° and 25°, respectively. In the areal roughness measurements carried out in the studies, it was seen that the erosion rates were directly proportional to the areal roughness values. It has been observed that the highest areal roughness values occur at an impact angle of 50°.

___

  • Binal G., Isothermal oxidation and hot corrosion behavior of HVOF sprayed 80Ni-20Cr coatings at 750 °C. Surface and Coatings Technology, 129141, 2022. https://doi.org/10.1016/j.surfcoat.2022.129141
  • Cemuschi F., Augello L., Solid Particle Erosion of TBCS: Jet Tester Modeling and Erosion Forecasts. In Developments in Strategic Materials and Computational Design V: A Collection of Papers Presented at the 38th International Conference on Advanced Ceramics and Composites January 27–31, 2014 Daytona Beach, Florida (Vol. 35, pp. 139-150). Hoboken, NJ, USA: John Wiley Sons, Inc. https://doi.org/10.1002/9781119040293.ch11
  • Cernuschi F., Guardamagna C., Capelli S., Lorenzoni L., Mack D.E., Moscatelli A., Solid particle erosion of standard and advanced thermal barrier coatings. Wear, 348, 43-51, 2016. https://doi.org/10.1016/j.wear.2015.10.021
  • Chowdhury M.A., Debnath U.K., Nuruzzaman D.M. Islam M.M., Experimental analysis of aluminum alloy under solid particle erosion process. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(12), 1516-1541, 2016. https://doi.org/10.1177/1350650116639466
  • Demirci M., Bagci M., Erosion of ceramic coating applications under the influence of APS and HVOF methods. Applied Nanoscience, 12(11), 3409-3415, 2022. https://doi.org/10.1007/s13204-022-02691-4
  • Essa S.K., Chen K., Liu R., Wu X. and Yao M.X., 2021. Failure mechanisms of APS-YSZ-CoNiCrAlY thermal barrier coating under isothermal oxidation and solid particle erosion. Journal of Thermal Spray Technology, 30, 424-441, 2021. https://doi.org/10.1007/s11666-020-01124-4
  • Golewski P., Sadowski T., The influence of TBC aging on crack propagation due to foreign object impact. Materials, 12(9), 1488, 2019. https://doi.org/10.3390/ma12091488
  • Kaplan M., Uyaner M., Avcu E., Yildiran Avcu, Y. Karaoglanli, A.C., Solid particle erosion behavior of thermal barrier coatings produced by atmospheric plasma spray technique. Mechanics of Advanced Materials and Structures, 26(19), 1606-1612, 2019.https://doi.org/10.1080/15376494.2018.1444221
  • Karaoglanli A.C., Structure and durability evaluation of blast furnace slag coatings and thermal barrier coatings (TBCs) under high temperature conditions. Surface and Coatings Technology, 452, 129087, 2023. https://doi.org/10.1016/j.surfcoat.2022.129087
  • Karaoglanli A.C., Grund T., Turk A., Lampke T., A comparative study of oxidation kinetics and thermal cyclic performance of thermal barrier coatings (TBCs). Surface and Coatings Technology, 371, 47-67, 2019. https://doi.org/10.1016/j.surfcoat.2018.12.082
  • Kumar D., Pandey K.N., Solid particle erosive wear behavior of sol–gel-derived AA2024 thermal barrier coatings. Surface Review and Letters, 28(02), 2050051, 2021. https://doi.org/10.1142/S0218625X20500511
  • Malvi B., Roy M., Elevated Temperature Erosion of Plasma Sprayed Thermal Barrier Coating. Journal of Thermal Spray Technology, 30(4), 1028-1037, 2021. https://doi.org/10.1007/s11666-021-01189-9
  • Nomoto H., Solid particle erosion analysis and protection design for steam turbines. In Advances in Steam Turbines for Modern Power Plants, Woodhead Publishing, 219-239, 2017.
  • Ozgurluk Y., Doleker K.M., Ahlatci H., Ozkan D., Karaoglanli A.C., The microstructural investigation of vermiculite-infiltrated electron beam physical vapor deposition thermal barrier coatings. Open Chemistry, 16(1), 1106-1110, 2018. https://doi.org/10.1515/chem-2018-0097
  • Özkan D., Karaoğlanlı C. High Entropy Alloys: production, properites and utilization areas. El-Cezeri. 8(1): 164-181, 2021. https://doi.org/10.31202/ecjse.800968
  • Özkan D., MCrAlY İçerikli Bağ Kaplamaya Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal Özelliklerinin ve İzotermal Oksidasyon Davranışının İncelenmesi, Politeknik Dergisi, 25, 1, 331-338, 2022. doi:10.2339/politeknik.885466
  • Parlakyigit A.S., Ozkan D., Oge M., Ozgurluk Y., Doleker K.M., Gulmez T. Karaoglanli A.C., Formation and growth behavior of TGO layer in TBCs with HVOF sprayed NiCr bond coat. Emerging Materials Research, 9(2), 451-459, 2020. https://doi.org/10.1680/jemmr.18.00085
  • Shin D., Hamed A., Influence of micro–structure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions. Wear, 396, 34-47, 2018. https://doi.org/10.1016/j.wear.2017.11.005
  • Wang D.S., Tian Z.J., Yang B., Shen L.D., Preparation and solid particle erosion behaviors of plasma-sprayed and laser-remelted ZrO2-7wt.% Y2O3 thermal barrier coatings. In Applied Mechanics and Materials 159, 191-197, 2012. https://doi.org/10.4028/www.scientific.net/AMM.159.191
  • Zhang P., Li F., Zhang X., Zhang Z., Tan C., Ren L., Liu M., Effect of bionic unit shapes on solid particle erosion resistance of ZrO2–7wt% Y2O3 thermal barrier coatings processed by laser. Journal of Bionic Engineering, 15(3), 545-557, 2018. https://doi.org/10.1007/s42235-018-0045
  • Zhao X., Liu W., Li C., Yan G., Wang Q., Yang L. Zhou Y., Solid Particle Erosion Behavior of La2Ce2O7/YSZ Double-Ceramic-Layer and Traditional YSZ Thermal Barrier Coatings at High Temperature. Coatings, 12(11), 1638, 2022. https://doi.org/10.3390/coatings12111638
Journal of Materials and Mechatronics: A-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2020
  • Yayıncı: Yusuf KAYALI