Thermal Tolerance of Turkish Crayfish (Astacus leptodactylus) Acclimated to Three Different Temperatures

Critical thermal maxima (CTMax) and minima (CTMin) were determined for Turkish crayfish (Astacus leptodactylus) acclimated to 15, 20 and 25°C. CTMin and CTMax were 1.3, 1.1 and 2.0°C, and 37.4, 37.5 and 38.7°C, respectively. Thermal tolerance tests showed that acclimation temperatures (15, 20 and 25C) had significant effects on CTMin values of A. leptodactylus (P≤0.05). The area of thermal tolerance assessed using the CTMin and CTMax boundaries were calculated as 364°C2 . The overall ARR values were calculated as 0.07 for CTMin and 0.13 for CTMax values between 15 and 25 C acclimation tempera-tures. All the crayfish crumpled at 0.5°C and showed overall spasm at 32.0 – 33.0°C. Farming A. leptodactylusin the southeastern part of the Mediterranean region may be practiced in terms of temperature tolerance.

Üç Farklı Sıcaklığa Alıştırılan Türk Kereviti (Astacus leptodactylus)’nin Sıcaklık Toleransı

15, 20 ve 25 °C’ye alıştırılan Türk kereviti için kritik termal maksima (CTMax) ve minima (CTMin) değerleri belirlenmiştir. CTMin ve CTMax değerleri sırasıyla 1,3, 1,1 ve 2,0 ile 37,4, 37,5 ve 38,7 °C’dir. Sıcaklık tolerans testleri alıştırma sıcaklıklarının (15, 20 ve 25 °C) A. leptodactylus CTMin değerlerine önemli etkilerde bulunduklarını göstermiştir (P≤0,05). Sıcaklık tolerans alanı CTMin ve CTMax sınırları ile değerlendirilerek 364°C2 olarak hesaplanmıştır. Genel olarak 15 ile 25 C arası alıştırma sıcaklıklarında, alıştırma tepki oranı (ARR) 0,07 ile 0,13 olarak hesaplananmıştır. Kerevitlerin tamamı 0,5 °C’de kıvrılma ve geneli 32,0- 33,0°C’de kasılma göstermiştir. Akdeniz bölgesinin güneydoğu kesiminde A. leptodactylus yetiştiriciliği sıcaklık toleransı açısından uygun olabilir.

___

Beitinger T, Bennett W, McCauley R. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Env Biol of Fish. 58:237–275. doi: 10.1023/A:1007676325825

Bennett WA, Beitinger TL. 1997. Temperature Tolerance of the Sheepshead Minnow, Cyprinodon variegatus. Copeia 1997:77–87. doi: 10.2307/1447842

Bowler K. 1963. A study of the factors involved in acclimatization to temperature and death at high temperatures in Astacus pallipes. I. Experiments on intact animals. J Cell Comp Physio. 62:119–132. doi: 10.1002/jcp.1030620203

Claussen DL. 1977. Thermal acclimation in ambystomatid salamanders. Comp Biochem Physio Part A: Physio. 58(4):333–340. doi: 10.1016/0300-9629(77)90150-5

Claussen DL. 1980. Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis. Comp Biochem Physio Part A: Physio. 66(3):377–384. doi: 10.1016/0300-9629(80)90183-8

Cowles RB, Bogert CM. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulle Ame Mus Nat His. 83:261–296. doi: 10.1086/394795

Díaz F, Sierra E, Denisse Re A, Rodríguez L. 2002. Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman). J Therm Bio. 27(5):423–428. doi: 10.1016/S0306-4565(02)00011-6

Díaz F, Re AD, Sierra E, Amador G. 2004. Behavioral thermoregulation and critical limits applied to culture of red claw crayfish Cherax quadricarinatus (Von Martens). Fresh Cray. 14:90–98.

Diaz F, Salas A, Denisse Re A, Gonzalez M, Reyes I. 2011. Thermal preference and tolerance of Megastrea (Lithopoma) undosa (Wood, 1828; Gastropoda: Turbinidae). J Therm Bio. 36:34–37. doi: 10.1016/j.jtherbio.2010.10.004

Eme J, Bennett WA. 2009. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. J Therm Bio. 34:220–225. doi: 10.1016/j.jtherbio.2009.02.005

Espina S, Diaz Herrera F., Bückle RLF. 1993. Preferred and avoided temperatures in the crawfish Procambarus clarkii (Decapoda, Cambaridae). J Therm Bio. 18:35– 39. doi: 10.1016/0306-4565(93)90039-V

Firkins I. 1993. Environmental tolerances of three species of freshwater crayfish. [PhD Thesis]. Nottingham University. 288 p.

Firkins I, Holdich DM. 1993. Thermal studies with three species of freshwater crayfish. Freshwater Crayfish. 9(1):241–248.

González RA, Díaz F, Licea A, Denisse Re A, Noemí Sánchez L, García-Esquivel Z. 2010. Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures. J Therm Bio. 35(5):218–224. doi: 10.1016/j.jtherbio.2010.05.004

Harlioǧlu MM. 2004. The present situation of freshwater crayfish, Astacus leptodactylus (Eschscholtz, 1823) in Turkey. J Aquac. 230:181–187. doi: 10.1016/S0044-8486(03)00429-0

Hernández-Rodriguez M, Bückle-Ramirez F, DíazHerrera F. 1996. Critical thermal of Macrobrachium tenellum. J Therm Bio. 21:139–143. doi: 10.1016/0306-4565(95)00039-9

Herrera FD, Uribe ES, Ramirez LFB, Mora AG. 1998. Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palaemonidae). J Therm Bio. 23:381–385. doi: 10.1016/S0306-4565(98)00029-1

Holdich DM. 1993. A review of astaciculture: freshwater crayfish farming. Aq Liv Resour. 6:307–317. doi: 10.1051/alr:1993032

Huey RB, Stevenson RD. 1979. Integrating Thermal Physiology and Ecology of Ectothenns: A Discussion of Approaches Department. Am Zoo. 19:57–366.

Köksal G. 1988. Astacus leptodactylus in Europe. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London: Timber Press. p. 365-400.

Kumlu M, Kumlu M, Turkmen S. 2010a. Combined effects of temperature and salinity on critical thermal minima of pacific white shrimp Litopenaeus vannamei (Crustacea: Penaeidae). J Therm Bio. 35:302–304. doi: 10.1016/j.jtherbio.2010.06.008

Kumlu M, Türkmen S, Kumlu M. 2010b. Thermal tolerance of Litopenaeus vannamei (Crustacea: Penaeidae) acclimated to four temperatures. J Therm Bio. 35:305–308. doi: 10.1016/j.jtherbio.2010.06.009

Layne JR, Claussen DL, Manis ML. 1987. Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. J Therm Bio. 12:183–187. doi: 10.1016/0306-4565(87)90001-5

Manush SM, Pal AK, Chatterjee N, Das T, Mukherjee SC. 2004. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. J Therm Bio. 29:15–19. doi: 10.1016/j.jtherbio.2003.11.005

Paladino FV, Spotila JR, Schubauer JP, Kowalski KT. 1980. The critical thermal maximum- a technique used to elucidate physiologial stress and adaptation in fishes. Rev Can Bio. 39:115–122.

Pérez E, Díaz F, Espina S. 2003. Thermoregulatory behavior and critical thermal limits of the angelfish Pterophyllum scalare (Lichtenstein) (Pisces: Cichlidae). J Therm Bio. 28:531–537. doi: 10.1016/S0306-4565(03)00055-X

Re AD, Diaz F, Sierra E, Rodríguez J, Perez E. 2005. Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea, Penaeidae). J Therm Bio. 30:618–622. doi: 10.1016/j.jtherbio.2005.09.004

Salas A, Díaz F, Re AD, Galindo-Sanchez CE, SanchezCastrejon E, González M, Licea A, Sanchez-Zamora A, Rosas C. 2014. Preferred Temperature, Thermal Tolerance, and Metabolic Response of Tegula regina (Stearns, 1892). J Shell Res. 33:239–246. doi: 10.2983/035.033.0123

Simčič T, Pajk F, Jaklič M, Brancelj A, Vrezec A. 2014. The thermal tolerance of crayfish could be estimated from respiratory electron transport system activity. J Therm Bio. 41:21–30. doi: 10.1016/j.jtherbio.2013.06.003

Spoor WA. 1955. Loss and gain of heat-tolerance by the crayfish. T Bio Bull. 108:77–87. doi: 10.2307/1538399

Tepler S, Mach K, Denny M. 2011. Preference versus performance: Body temperature of the intertidal snail Chlorostoma funebralis. Bio Bull. 220:107–117.

Westhoff JT, Rosenberger AE. 2016. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth. Rev Fish Biol Fisheries 26:329- 349. doi: 10.1007/s11160-016-9430-5

Wickins JF, O’C Lee D. 2003. Crustacean Farming, Ranching and Culture, 2nd edition. Aqua Res. 34:269- 270. doi: 10.1046/j.1365-2109.2003.00813.x
Journal of Limnology and Freshwater Fisheries Research-Cover
  • ISSN: 2148-9300
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Araştırma Enstitüsü Müdürlüğü
Sayıdaki Diğer Makaleler

Ontogenetic Diet Shift of Invasive Gibel Carp (Carassius gibelio, Bloch 1782) in Karamenderes River (Turkey)

Nurbanu PARTAL, ŞÜKRAN YALÇIN ÖZDİLEK

Dietary Protein Requirements of Zebrafish (Dania rerio)

Hüseyin SEVGİLİ, Soner SEZEN, MAhir KANYILMAZ, Özgür AKTAŞ, Faruk PAK

Fossil and Recent Distribution and Ecology of Ancient Asexual Ostracod Darwinula stevensoni (Ostracoda, Crustacea) in Turkey

MEHMET YAVUZATMACA, OKAN KÜLKÖYLÜOĞLU

Karamenderes Çayı’nda (Türkiye) İstilacı Gümüşi Havuz Balığının (Carassius gibelio, Bloch 1782) Beslenmesindeki Ontogenetik Değişim

Nurbanu PARTAL, Şükran Yalçın ÖZDİLEK

Doğu Karadeniz Bölgesinde Amfibi Patojeni Batrachochytrium dendrobatidis’in Potansiyel Dağılımı

Uğur Cengiz ERİŞMİŞ

Assessment of Fish Exports from Blantyre District, Southern Malawi

Langson SAMALA, Fanuel KAPUTE

Abant Gölü Zooplankton Faunası: Geçmiş ve Bugün

Pınar GÜRBÜZER, Ezgi TÜZÜN TERESHENKO, Ahmet ALTINDAĞ, Seyhan AKISKA

Potential Distribution of the Amphibian Pathogen, Batrachochytrium dendrobatidis in the Eastern Black Sea Region of Turkey

UĞUR CENGİZ ERİŞMİŞ

Üç Farklı Sıcaklığa Alıştırılan Türk Kereviti (Astacus leptodactylus)’nin Sıcaklık Toleransı

Metin KUMLU, O. Tufan EROLDOĞAN, H. Asuman YILMAZ, Abdullatif ÖlÇÜLÜ

Turunçgil Kabuk Yağlarının Gökkuşağı Alabalığı (Oncorhynchus mykiss) Filetolarının Raf Ömrü Üzerine Etkileri

Pınar OĞUZHAN YILDIZ