Genetik algoritma aracılığıyla mimari cephelere ilişkin görsellerin üretimi için bir model

Bu çalışmada, mekânsal artırılmış gerçeklik sunumlarında kullanılacak görselleri üretmek için mimari cephelere ilişkin genetik algoritma tabanlı bir model geliştirilmiştir. Öncelikle, mimari cepheye atıfta bulunan projeksiyon haritalama görselleri çalışma kapsamında incelenmiştir. Mimari cephelerin doluluk/boşluk ilişkisi, yapı elemanları ve 3. boyut etkisi üzerinden tanımlanabildiği görülmüştür. Bu çıkarıma dayalı olarak, cephenin mimari diline ilişkin projeksiyon haritalamalarının öncü örneklerinden birinde de kullanılan Hamburger Kunsthalle'nin cephesi çalışmada mimari cepheyi yeniden tanımlamak için kullanılmıştır. Modele dayalı görsellerin üretilmesi için genetik algoritma tabanlı bir çerçeve geliştirilmiştir. Hamburger Kunsthalle'nin yeniden tanımlanan cephesinde doluluk-boşluk ilişkisi, yapı elemanları ve 3. boyut etkisi üzerinden model sunulmuştur. Model, tanımlanan başlangıç görsel bileşenlerinden farklı görsel olasılıkların türetilmesine izin vermektedir. Tanımlanan başlangıç görsel bileşenleri, gen popülasyonunun üretilmesinde temel alınmaktadır. Seçilen mimari cepheye özgü olarak tanımlanan uygunluk fonksiyonları aracılığıyla üretilecek görsellerin belirlenmesini ve sınırlanması sağlanmaktadır. Üretilen görsellerin değerlendirme sıralamasına bağlı olarak uygun görseller seçilirken, uygun bulunmayanlar genetik işlemlerden geçirilerek gen havuzu zenginleştirilir. Bu aşamadaki değerlendirme sıralaması, döngüsel süreç içerisinde üretilecek görseller üzerinde etkili olmaktadır. Bu nedenle model kullanıcısı üretilecek görsellerde belirleyici bir role sahiptir ve kullanıcının cephenin mimari diline uygun görsel seçiminde uzman olması gerekmektedir. Bu model, genetik algoritma ve mekansal artırılmış gerçeklik kesişiminde mimari cephelerin dilini taşıyan sanal varyasyonlarını üretme ve sunma imkanı sağlamaktadır.

A model for generating visuals related to architectural facades through genetic algorithm

In this study, a genetic algorithm based model related to architectural facades was developed for generating visuals to be used in spatial augmented reality presentations. First of all, the visuals of the projection mapping referring to the architectural facade were reviewed within the scope of the study. It was seen that architectural facades could be defined by using mass/void relationship, building elements, and 3D effect. Based on this inference, the facade of the Hamburger Kunsthalle, which was also used in one of the pioneering examples of projection mapping regarding the architectural language of the facade, was used to redefine the architectural facade in the study. A genetic algorithm based framework was developed to generate visuals from the model. It was presented as a model from the perspective of mass/void relationship, building elements, and 3D effect on the redefined facade of the Hamburger Kunsthalle. The model allows different visual possibilities to be derived from identified initial visual elements. The generation of the gene population are based on the identified initial visual elements. It is provided to determine and limit the generation of visuals by the specifically defined fitness functions for the selected architectural facade. Depending on the evaluation ranking of the generated visuals, while appropriate visuals are selected, others that are not appropriate are genetically processed to enrich the gene pool. The evaluation ranking at this stage has an impact on the visuals to be produced in the cyclical process. Therefore, the model user has a decisive role in the visuals to be produced and the user must be an expert in the selection of visuals appropriate for the architectural language of the facade. At the intersection of genetic algorithms and spatial augmented reality, this model offers the possibility of generating and presenting virtual variations that include the language of architectural facades.

___

  • Aksu, M. (2019). Mimarlıkta video projeksiyon haritalama kullanımı. Tasarım Enformatiği, 1(2), 107-117.
  • Albayrak, A. (2017). Kamusal alanlarda veri kültürü: Video mapping. Fine Arts, 12(3), 164-176.
  • Aydınlı, S. (2008). Mekân’dan mekânsal’a: Mekânın zamansallığı/zamanın mekânsallığı, zaman-mekân (Haz.: A. Şentürer, Ş. Ural, Ö. Berber, F. Uz Sönmez), s. 150-161, İstanbul: YEM Yayın.
  • Bentley, P. (1999). An introduction to evolutionary design by computers. Evolutionary design by computers, 1-73.
  • Bölek, B., Demirkol, H. G., & İnceoğlu, M. (2022). Architectural design with generative algorithm and video projection mapping. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 23, 50-59.
  • Burczykowski, L., & Thébault, M. (2020). Points of view: Origins, history and limits of projection mapping. Image Beyond the Screen: Projection Mapping, 69-81.
  • Calixte, X., & Leclercq, P. (2017). The interactive projection mapping as a spatial augmented reality to help collaborative design: Case study in architectural design. In Cooperative Design, Visualization, and Engineering: 14th International Conference, CDVE 2017, Mallorca, Spain, September 17-20, 2017, Proceedings 14 (pp. 143-152). Springer International Publishing.
  • Çetinkaya, O. (2020). Investigation of the Interaction of Architecture and Digital Art Through the Projection Mapping Installations in Public Spaces (Master's thesis, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ)).
  • DeLanda, M. (2002). Deleuze and the use of the genetic algorithm in architecture. Architectural Design, 71(7), 9-12.
  • Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing. Springer-Verlag Berlin Heidelberg.
  • Fasoulaki, E. (2007). Genetic algorithms in architecture: A necessity or a trend. In 10th Generative Art International Conference, Milan, Italy.
  • Gökçen, T. (2016). Mimari cephede çok boyutlu tasarım arayüzü olarak video haritalama ve algısal mekân deneyimi (Master's thesis, Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü).
  • Griffin, H. (2018). Moving the immovable: Projection mapping and the changing face of architecture. In: AMPS Conference Moving Images - Static Spaces: Architecture, Art, Media, Film Digital Art and Design, 12-13 Apr 2018, Istanbul.
  • Grundhöfer, A., & Iwai, D. (2018). Recent advances in projection mapping algorithms, hardware and applications. In Computer graphics forum (Vol. 37, No. 2, pp. 653-675).
  • Head, A. (2012). Exploring the issues of digital outdoor architectural projections.
  • Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
  • Işıkkaya, D., & Çatak, G. (2010). An evaluation on video mapping as an architectural performance. In 1st Annual International Conference on Fine and Performing Arts (pp. 7-10).
  • Işıkkaya, A. D. (2023). Video projection mapping as a visual urban art performance on architectural facade. Street Art & Urban Creativity Scientific Journal, 9(1).
  • Lovell, J., & Griffin, H. (2019). Fairy tale tourism: the architectural projection mapping of magically real and irreal festival lightscapes. Journal of Policy Research in Tourism, Leisure and Events, 11(3), 469-483.
  • Moloney, J. (2007). A framework for the design of kinetic façades. In Computer-Aided Architectural Design Futures (CAADFutures) 2007: Proceedings of the 12th International CAADFutures Conference (pp. 461-474). Springer Netherlands.
  • Nofal, E., Stevens, R., Coomans, T., & Moere, A. V. (2018). Communicating the spatiotemporal transformation of architectural heritage via an in-situ projection mapping installation. Digital Applications in Archaeology and Cultural Heritage, 11, e00083.
  • Nota Bene Visual (2010). Pera Palace Hotel - Abstract part, grand opening. Nota Bene Visual. https://www.notabenevisual.com/#/works/pera-palace-hotel-abstract/
  • Quadrature (2013). Quadrature: A/V Performance at Santralistanbul. Quadrature. https://quadrature.co/work/quadrature/
  • Oury, J. (2020). Architectural projection mapping contests: An opportunity for experimentation and discovery. Image Beyond the Screen: Projection Mapping, 213-227.
  • Singh, V., & Gu, N. (2012). Towards an integrated generative design framework. Design studies, 33(2), 185-207.
  • Stella, M. (2020). Projection mapping: A new symbolic form?. Image Beyond the Screen: Projection Mapping, 51-67.
  • Turner, J. S. (2012). Evolutionary architecture? Some perspectives from biological design. Architectural Design, 82(2), 28-33.
  • Urbanscreen (2009). 555 Kubik, How it would be if a house was dreaming. Urbanscreen. https://www.urbanscreen.com/555-kubik/
  • WDCH Dreams (2019, Eylül 27). WDCH Dreams. Refik Anadol. https://refikanadol.com/works/wdch-dreams/
  • Zülkadiroğlu, D. (2013). Mimari cephe temsillerinin kullanıcı algısına etkisinin incelenmesi (Doctoral dissertation, İstanbul Kültür Üniversitesi/Fen Bilimleri Enstitüsü/Mimarlık Anabilim Dalı/Mimari Tasarım Bilim Dalı).