The effect of exogenous superowide generator chemicals on sodA and flpA promoters expression in Lactococcus lactis

Oksijen stresine aerobik büyüme şartlarında süperoksit anyonu veya hidrojen peroksit sebep olmaktadır. Bazı bakteriler toksik oksijen türlerini SodA enzimini kullanarak elimine edebilmektedirler. Bu çalışmada süperoksit üreten kimyasalların ve hidrojen peroksidin sodA veflpA promoter aktivitesine etkisi incelenmiştir. Bulgular flpA promotor aktivitesinin menadione eklenmesi ile flpB mutant bakterisinde yükseldiği fakat flpA mutant bakterisinde yükselmediği bulunmuştur. Ayrıca sodA aktivitesi kültürün sallanması, memadione, paraquat ve plumbagin kimyasallarının eklenmesi ile sırasıyla 4-, 7-, 50, ve 27-kat yükseltilmiştir. Katalâz enzim eklenmesi flpA mutant bakterilere büyüme safhasında flpB mutantı ve mutant olmayan bakterilerden daha fazla pozitif etki sağlamıştır. Dışarıdan hidrojen peroksit eklenmesi ne sodA promotor aktivitesini ne de SodA enzim aktivitesini arttırmıştır.

Lactococcus lactis' te dış kaynaklı süperoksit üreten kimyasalların sodA ve flpA promoter aktivitesine etkisi

Oxidative stress is caused by superoxide anion or hydrogen peroxide under aerobic growth condition. Some bacteria could eliminate toxic species of oxygen using SodA enzyme. The effect of superoxide generating chemicals and hydrogen peroxide on sodA and flpA promoter activities were investigated in this study. The observation indicated that the flpA promoter activity increased with menadione addition in the flpB mutant but not flpA mutant backgrounds. Also sodA activity increased 4-, 7-, 50, and 27-fold in shaking (250 rpm), memadione, paraquat and plumbagin addition respectfully. Catalase enzyme supplementation had positive effect on bacterial growth during exponential phase of flpA mutants than flpB mutants and wild type. Exogenously, hydrogen peroxide addition was unable to increase either sodA promoter or SodA enzyme activity.

___

  • Akyol I. The role of FNR like proteins in Lactococcus lactis, PhD thesis, University of East Anglia, U.K., 2002.
  • Asad NR, Asad LMBO, De Almeida CEB, Felzenszwalb I, Cabral-Neto JB and Leitao AC. Several pathways of hydrogen peroxide action that damage the E-coli genome. Genet, and Mol. Biol. 27: 291-303, 2004.
  • Bradford MM. A rapid and sensitive methods for the quantification of microorganism quantities of protein utilizing the principle of protein-dye binding. Annu. Rev. Biochemi. 72: 248-256, 1976.
  • Bolptin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD and Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403. Genome Res. 11: 731-753, 2001.
  • Bowler C, Vankaer L, Vancamp W, Vanmontagu M, Inze D and Dhaese P. Characterization of the Bacillus stearothermophilus manganese superoxide-dismutase gene and its ability to complement copper-zinc superoxide-dismutase deficiency in Saccharomyces-cerevisiae.J.Bacteriol. 172: 1539-1546, 1990.
  • Chang WS and So JS. Characterization of superoxide dismutase in Lactococcus lactis. J. Microbiol. and Biotech. 9: 732-736, 1999.
  • Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic Streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9, 1983.
  • Gostick DO, Griffin HG, Shearman CA, Scott C, Green J, Gasson MJ and Guest JR. Two operons that encode FNR like proteins in Lactococcus lactis. Mol. Microbiol. 31 : 1523-1535, 1999.
  • Halli well B. Role of free radicals in the neurodegenerative diseases - Therapeutic implications for antioxidant treatment. Drugs and Aging. 18: 685-716, 2001.
  • Holo H., and Nes I. F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123, 1989.
  • Kiley PJ and Beinert H. Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol. Rev. 22: 341-352, 1999.
  • Kok J, Kuiper O., De Jong A, Van Sinderen D, Fitzgerald G, Wegman U, Shearman C and Gasson M. The genome sequencing project of Lactococcus lactis MG1363. In EuroLAB Conference. (3rd-6th July, Cork, Ireland), 2001.
  • Leclere V, Bechet, M and Blondeau R. Functional significance of a periplasmic Mn-superoxide dismutase from Aeromonas hydrophila. J. Appl. Microbiol., 96: 828-833, 2004.
  • McCord JM. Superoxide dismutase in aging and disease: An overview. Methods Enzymol. 349: 331-341, 2002.
  • Okado-Matsumoto A, Batinic-Haberle I and Fridovich I. Complementation of sod-deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity. Free Radical Biol. Med., 37: 401-410, 2004.
  • Rawsthorne H. Oxygen regulation in Lactococcus lactis, PhD thesis, University of East Anglia, U.K., 2000.
  • Sanders JW, Leenhouts KJ, Haandrikman AJ, Venema G and Kok J. Stress-response in Lactococcus lactis cloning, expression analysis, and mutation of the lactococcal superoxide-dismutase gene. J. Bacteriol., Ill: 5254-5260, 1995.
  • Schnell S and Steinman HM. Function and stationary phase induction of periplasmic copper- zinc superoxide-dismutase and catalase peroxidase in Caulobacter crescentus. J. Bacteriol. Ill: 5924-5929, 1995.
  • Spiro S and Guest JR. FNR and its role in oxygen-regulated gene-expression in Escherichia coli. FEMS Microbiol. Rev. 75: 399-428, 1990.
  • Steinman HM. The amino acid sequence of mangono superoxide dismutase from Escherichia coli. J.Biol. Chem. 253: 8708-8720, 1978.
  • Takeda Y and Avila H. Structure and gene expression of the Escherichia coli Mn-superoxide dismutase gene. Nucleic Acids Res., 14: 4577-4589, 1986.
  • Woo-Suk C and So J. Characterization of superoxide dismutase in Lactococcus lactis. J. Microbial. Biotechnol. 9: 732-736, 1999.
  • Zelko IN, Mariani TJ and Folz RJ. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol. Med. 33: 337-349, 2002.