The effect of electromagnetic fields on oxidative DNA damage

Günümüzdeki birçok çalışma, elektromanyetik alanın biyolojik etkilerinin araştırılması üzerinde odaklanmıştırr. Elektromanyetik alanın biyolojik etkilerinin bazı türlerinin gösterilmiş olmasına rağmen, bu etkilerin moleküler mekanizmaları henüz açıklanamamıştır. Bazı epidemiyolojik çalışmalar, 50-60 Hz dolayındaki düşük düzeyli elektromanyetik alana maruz kalmanın yüksek gerilim hatlarına yakın yaşamakta olan çocuklarda veya elektromanyetik alana maruz kalarak çalışanlarda görülen lösemi gibi kanser vakalarını kapsayan hastalıklara ilişkin riski artırdığını öne sürerken, bazı çalışmalar ise elektromanyetik alan maruziyetinin serbest radikal konsantrasyonunu ve serbest radikallerin izlenebilirliğini artırabileceğini ileri sürmüştür. Elektromanyetik alanın radikal çifti rekombinasyonunu etkilediği bilinmektedir ve bu da, hücrelerdeki oksijene dayalı serbest radikal konsantrasyonunu artırabilir. Bu çalışmada, askorbik asit oksidasyonu ile oksidatif stres oluşturulmuş ve 50 Hz, 0.3 mT düzeyindeki elektromanyetik alanın, oksidatif DNA hasarı üzerindeki etkisi araştırılmıştır. Bu çalışmanın sonuçları, oldukça düşük frekanslı elektromanyetik alanın, oksidatif stresin DNA hasarı üzerindeki etkisini artırdığını göstermifl ve önceki araştırmalardan elde edilen, elektromanyetik alanın serbest radikal konsantrasyonu ve yarı ömrü üzerindeki artırıcı etkisine dair düşünceleri desteklemiştir.

Elektromanyetik alanın oksidatif DNA hasarı üzerindeki etkisi

Many recent studies have focused on the investigation of the biological effects of electromagnetic field. Although the several types of biological effects of electromagnetic fields have been shown, the molecular mechanisms of these effects have not been explained yet. Some epidemiological studies have suggested that exposure to ambient, lowlevel 50-60 Hz electromagnetic fields increase risk of disease including cancer such as leukemia among children who live close to power lines or among men whose jobs expose them to electromagnetic field, while others have suggested that electromagnetic fields exposure could increase both the concentration of free radicals and oscillating free radicals. Electromagnetic fields are known to affect radical pair recombination and they may increase the concentration of oxygen free radicals in living cells. In this study, oxidative stress was formed by the oxidation of ascorbic acid and the effect of 50 Hz, 0.3 mT electromagnetic fields on the oxidative DNA damage has been investigated. The results of the study showed that extremely low-frequency electromagnetic fields enhanced the effect of oxidative stress on DNA damage and supported the idea obtained from the previous studies on an increasing effect of electromagnetic fields on the concentration and the life-time of free radicals.

___

  • Erdem G, Öner C, Önal AM, Kısakürek D and Öğüş A. Free radical mediated interaction of ascorbic acid and ascorbate/Cu(II) with viral and plasmid DNAs. J Biosci. 19: 9-17, 1994.
  • Eveson RW, Timmel CR, Brocklehurst B, Hore PJ and McLauchland KA. The effects of weak magnetic fields on radical recombination reactions in micelles. Int J Radiation Biol. 76: 1509-1522, 2000.
  • Fuchs J, Mehlhron RJ and Packer L. Assay for free radical reductase activity in biological tissue by electron spin resonance spectroscopy. Methods in Enzymology. 186: 670-674, 1990.
  • Galt S, Whalstrom J, Hamnerius Y, Holmqvist D and Johannesson T. Study of effects of 50 Hz magnetic fields on chromosome aberration and growth-related enzyme ODC in human amniotic cells. Bioelectrochemistry and Bioenergetics. 36: 1-8, 1995.
  • Goodman EM, Greenebaum B and Marron MT. Effects of electromagnetic fields on molecules and cells. In: Int Rew Cytology, A Survey of Cell Biology. Jean KW and Jarvik J (Ed). Academic Press. 158: 279-338, 1995.
  • Jajte J and ZmySlony M. The role of melatonin in the molecular mechanism of weak, static and extremely low frequency (50 Hz) magnetic fields (ELF). Medycyna Pracy. 51: 51-57, 2000.
  • Jajte JM. Programmed cell death as a biological function of electromagnetic fields at a frequency of (50/60 Hz). Medycyna Pracy. 51: 383-389, 2000.
  • Lai H and Singh NP. Melatonin and N-tert-butyl-alpha- phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res. 22: 152-62, 1997.
  • London SJ, Thomas DC, Bowman JD, Sobel E, Cheng TC and Peters JM. Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol. 134: 923-37, 1991.
  • Poncz M, Solowiejczyk D, Harpel B, Mory Y, Schwartz E and Surrey S. Construction of human gene libraries from small amounts of peripheral blood: Analysis of ß-like globin genes. Hemoglobin. 6: 27-36, 1982.
  • Savitz DA, Wachtel H, Barnes FA, John EM and Tvrdik JG. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol. 128: 21-38, 1988.
  • Scaiano JC, Cozens FL and Mohtat N. Development of a model and application of the radical pair mechanism to radicals in micelles. Photochemistry and Photobiology. 62: 818-829, 1995.
  • Tomenius L. 50-Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County. Bioelectromagnetics. 7: 191-207, 1986.
  • Wertheimer N and Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 109: 273-284, 1979.
  • Zareie MH, Erdem G, Öner C, Öner R, Öğüş A and Piflkin E. Investigation of ascorbate-Cu (II) induced cleavage of DNA by scanning tunneling microscopy. Int J Biol Macromol. 19: 69-73, 1996.