All-On-Four Konseptine Göre Farkli Materyaller İle Üretilmiş Sabit Dental Protezlerin Stres Analizleri

Amaç: İmplant destekli sistemlerin protez tesliminden sonra uzun vadeli başarısını etkileyen en önemli faktör biyomekaniktir. Bu çalışmanın amacı, atrofik mandibulada All-On-4 tekniğine göre yerleştirilen implantlarla farklı alt yapı materyalleri kullanılarak tasarlanan protez restorasyonlarını farklı stres analiz yöntemleri ile incelemek ve yöntemleri karşılaştırmaktı. Yöntem: Bu amaçla, All-On-4 konseptine göre foto-elastik bir rezin model hazırlandı. Ölçü alındıktan sonra, fiberle güçlendirilmiş rezin, PEEK, zirkonya ve metal alt yapılar Cad / Cam ile üretildi. Foto elastik stres analizi yapıldı. Öte yandan, aynı alt yapıların 3 boyutlu sanal modelleri, CAD'in .stl verileriyle oluşturuldu. Daha sonra aynı koşullar altında sonlu elemanlar stres analizi uygulanmıştır. Bulgular: Fotoelastik ve sonlu elemanlar stres analizinde metal ve zirkonya gibi sert alt yapılar PEEK ve fiber gibi elastik materyallere göre daha düşük stres değerleri göstermiştir. Sonlu elemanlar analizi  imkanlarıyla alt yapıların iç gerilmeleri değerlendirildi. Düşük elastik modüllü fiber ve PEEK altyapılarında düşük gerilimler gözlendi. Sonuç: Altyapının elastikiyet modülü arttığında implantlara iletilen stresler azalmaktadır. Malzemelerin iç gerilmeleri değerlendirildiğinde, düşük elastik modüllü, fiber ve PEEK gibi altyapılarda düşük gerilmeler görülmektedir. Fotoelastik ve sonlu elemanlar stres analizleri implant ve çevre dokularda benzer stres sonuçları vermiştir. Yani sonuçlar birbirini desteklemiştir.

Stress Analysis Of Fixed Dental Prostheses Produced With Different Materials According To The All-On-Four Concept

Objective: The most important factor affecting the long-term success of implant supported systems is biomechanics after prosthesis delivery. The aim of this study was to investigate the prosthetic restorations designed by using different substructure materials on the implants placed according to All-On-4 technique in atrophic mandible with different stress analysis methods and compare the methods each other.Methods: For this purpose, a photo-elastic resin model, according to All-On-4 concept was prepared. After taking impression, fiber-reinforced resin, PEEK, zirconia and metal substructures were manufactured with Cad/Cam. Photo elastic stress analysis was performed.   On the other hand 3D virtual models of the same substructures were formed with the .stl data of the CAD. Then finite element stres analysis was applied at the same circumstances.Results: In the photoelastic and finite element stres analysis, rigid substructures such as metal and zirconia showed lower stres values than elastic materials such as PEEK and fiber. As a facility of the finite element analysis internal stresses of the substructures were evaluated. Lower stresses were observed in fiber and PEEK infrastructures with low elastic modulus. Conclusion: İncreased modulus of elasticity of the infrastructure, reduced.stresses transmitted to the implants When the internal stresses of the materials were evaluated, lower stresses were seen in infrastructures such as fiber and PEEK with low elastic modulus .Photoelastic and finite element stress analyzes gave similar stress results to the implant and surrounding tissues. Therefore, the results supported each other.

___

  • Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent. 2003;90(2):121-132.
  • Ayna M, Gulses A, Acil Y. Comprehensive Comparison of the 5-Year Results of All-on-4 Mandibular Implant Systems With Acrylic and Ceramic Suprastructures. J Oral Implantol. 2015;41(6):675-683.
  • Bellini CM, Romeo D, Galbusera F, et al. Comparison of tilted versus nontilted implant-supported prosthetic designs for the restoration of the edentuous mandible: a biomechanical study. Int J Oral Maxillofac Implants. 2009;24(3):511-517
  • Malo P, Rangert B, Nobre M. "All-on-Four" immediate-function concept with Branemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res. 2003;5 Suppl 1:2-9.
  • Babbush CA, Kutsko GT, Brokloff J. The all-on-four immediate function treatment concept with NobelActive implants: a retrospective study. J Oral Implantol. 2011;37(4):431-445.
  • Crespi R, Vinci R, Cappare P, Romanos GE, Gherlone E. A clinical study of edentulous patients rehabilitated according to the "all on four" immediate function protocol. Int J Oral Maxillofac Implants. 2012;27(2):428-434.
  • Agliardi E, Panigatti S, Clerico M, Villa C, Malo P. Immediate rehabilitation of the edentulous jaws with full fixed prostheses supported by four implants: interim results of a single cohort prospective study. Clin Oral Implants Res. 2010;21(5):459-465.
  • Browaeys H, Dierens M, Ruyffelaert C, Matthijs C, De Bruyn H, Vandeweghe S. Ongoing Crestal Bone Loss around Implants Subjected to Computer-Guided Flapless Surgery and Immediate Loading Using the All-on-4(R) Concept. Clin Implant Dent Relat Res. 2015;17(5):831-843.
  • Heydecke G, Zwahlen M, Nicol A, et al. What is the optimal number of implants for fixed reconstructions: a systematic review. Clin Oral Implants Res. 2012;23 Suppl 6:217-228.
  • Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol. 1997;23(3):104-111.
  • Çiftçi Y, Canay Ş. Stress Distribution on the Metal Framework of the Implant-Supported Fixed Prosthesis Using Different Veneering Materials. International Journal of Prosthodontics. 2001;14(5):406-411.
  • Carter DR, Van Der Meulen MC, Beaupre GS. Mechanical factors in bone growth and development. Bone. 1996;18(1 Suppl):5S-10S.
  • 3 - PHOTOELASTIC STUDIES IN STRESS CONCENTRATION: FILLETS, HOLES, AND GROOVES IN TENSION, COMPRESSION, AND BENDING. In: Leven MM, Frocht MM, eds. Photoelasticity. Pergamon; 1969:65-75.
  • Cehreli M, Duyck J, De Cooman M, Puers R, Naert I. Implant design and interface force transfer. A photoelastic and strain-gauge analysis. Clin Oral Implants Res. 2004;15(2):249-257.Caputo AAaS, J.P. Biomechanics in clinical dentistry. Quintessence Publishing Co, Inc, Chicago, . 1987:123-149.
  • Viecilli AF, Freitas MPM. The T-loop in details. Dental press journal of orthodontics. 2018;23(1):108-117.
  • Mahler DB, Peyton FA. Photoelasticity as a research technique for analyzing stresses in dental structures. J Dent Res. 1955;34(6):831-838.
  • Menicucci G, Lorenzetti M, Pera P, Preti G. Mandibular implant-retained overdenture: finite element analysis of two anchorage systems. Int J Oral Maxillofac Implants. 1998;13(3):369-376.
  • Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res. 2001;12(3):207-218.
  • Wyatt CC, Zarb GA. Bone level changes proximal to oral implants supporting fixed partial prostheses. Clin Oral Implants Res. 2002;13(2):162-168.
  • Baron M, Haas R, Baron W, Mailath-Pokorny G. Peri-implant bone loss as a function of tooth-implant distance. Int J Prosthodont. 2005;18(5):427-433.Zaparolli D, Peixoto RF, Pupim D, Macedo AP, Toniollo MB, Mattos M. Photoelastic analysis of mandibular full-arch implant-supported fixed dentures made with different bar materials and manufacturing techniques. Mater Sci Eng C Mater Biol Appl. 2017;81:144-147.
  • Morneburg TR, Proschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont. 2002;15(1):20-27.
  • Cosme DC, Baldisserotto SM, Canabarro Sde A, Shinkai RS. Bruxism and voluntary maximal bite force in young dentate adults. Int J Prosthodont. 2005;18(4):328-332.
  • Muller F, Hernandez M, Grutter L, Aracil-Kessler L, Weingart D, Schimmel M. Masseter muscle thickness, chewing efficiency and bite force in edentulous patients with fixed and removable implant-supported prostheses: a cross-sectional multicenter study. Clin Oral Implants Res. 2012;23(2):144-150.
  • Rubo JH, Souza EA. Finite element analysis of stress in bone adjacent to dental implants. J Oral Implantol. 2008;34(5):248-255.
  • Williams KR, Watson CJ, Murphy WM, Scott J, Gregory M, Sinobad D. Finite element analysis of fixed prostheses attached to osseointegrated implants. Quintessence international (Berlin, Germany : 1985). 1990;21(7):563-570.
  • Cibirka RM, Razzoog ME, Lang BR, Stohler CS. Determining the force absorption quotient for restorative materials used in implant occlusal surfaces. The Journal of prosthetic dentistry. 1992;67(3):361-364.
  • Lee KS, Shin SW, Lee SP, Kim JE, Kim JH, Lee JY. Comparative Evaluation of a Four-Implant-Supported Polyetherketoneketone Framework Prosthesis: A Three-Dimensional Finite Element Analysis Based on Cone Beam Computed Tomography and Computer-Aided Design. Int J Prosthodont. 2017;30(6):581-585.
  • Akca K, Cehreli MC, Iplikcioglu H. A comparison of three-dimensional finite element stress analysis with in vitro strain gauge measurements on dental implants. Int J Prosthodont. 2002;15(2):115-121.
  • Inan Ö, Sevimay, M., Eraslan, O., Eskitaşçıoğlu, G. Comparison of Finite Element and Photoelastic Stress Analysis Methods. Turkiye Klinikleri J Dental Sci. 2009;15(2):93-101.
Journal of Biotechnology and Strategic Health Research-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2017
  • Yayıncı: Deneysel, Biyoteknolojik, Klinik ve Stratejik Sağlık Araştırmaları Derneği