Maskeli Örümcek Kuşunun (Lanius nubicus, Licthenstein 1823) İklim Değişimi Etkisi Altındaki Dağılımı

Biyolojik çeşitliliğin sürdürülebilirliği için en ciddi tehdit iklim değişikliğidir. İklim değişikliğinin ekolojik sonuçlarını şimdiden tahmin etmenin en iyi yolu tür dağılım modellemeleridir. Bu çalışmada Maskeli örümcek kuşunun (Lanius nubicus) iklim değişimi etkisi altındaki dağılımı modellenmiştir. Yeni nesil iklim değişimi senaryoları olan SSPs (sosyo ekonomik yollar) senaryoları kullanılmıştır. Sonuçlara göre model eğitim verisi AUC değeri 0.899 ve test verisi AUC değeri 0.980 bulunmuştur. Maskeli örümcek kuşunun dağılımını sınırlayan bioiklim değişkenlerinin Bio19, Bio8, Bio12, Bio7 olduğu tespit edilmiştir. Yüzyılın sonuna doğru Kuzey Afrika'da ve Basra Körfezi'nde habitat kayıpları olacağı öngörülmüştür. Anadolu’da bu tür için uygun habitatların artışı dikkat çekicidir. Kıbrıs’ da ise kötümser senaryo etkisi altında habitat kayıpları öngörülmüştür. Diğer bir sonuç ise en kötümser iklim senaryosuna göre Maskeli örümcek kuşu (Lanius nubicus) dağılımının içinde kalan Doğu Akdeniz Havzasının 2100 yılına kadar uygun iklim koşullarını desteklemeye devam edeceği öngörülmüştür. Önemli bir refüj olan bu alanın paleoklimatolojik olaylar sırasında olduğu gibi, gelecekte iklim değişikliği sırasında aynı görevi göreceği öngörülmüştür.

Distribution of Masked Shrike (Lanius nubicus, Licthenstein 1823) Under The İnfluence of Climate Change

The most serious threat to the sustainability of biological diversity is climate change. The best way to predict the ecological consequences of climate change now is species distribution modeling. In this study, the distribution of the Masked Shrike (Lanius nubicus) under the effect of climate change is modeled. SSPs (socio-economic pathways) scenarios, which are new generation climate change scenarios, have been used. According to the results, the model training data AUC value was 0.899 and the test data AUC value was 0.980. Bioclimate variables limiting the distribution of the masked shrike were determined to be Bio19, Bio8, Bio12, Bio7. It is predicted that there will be habitat losses in North Africa and the Persian Gulf towards the end of the century. The increase in habitats suitable for this species in Anatolia is remarkable. In Cyprus, habitat losses are predicted under the effect of pessimistic scenario. Another result is that according to the most pessimistic climate scenario, it is predicted that the Eastern Mediterranean Basin, which is within the Masked Shrike (Lanius nubicus) distribution, will continue to support suitable climatic conditions until 2100. It is predicted that this area, which is an important refuge, will serve the same task during climate change in the future, as during paleoclimatological events.

___

  • Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C., & Moss, P. T. (2011). Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Research, 38(2), 122-130.
  • Alerstam, T., Hedenstrom, A. & Akesson, S. (2003). Long-distance migration: evolution and determinants. Oikos, 103, 247-260.
  • Berthold, P., Helbig, A.J., Mohr, G., & Querner, U. (1992). Rapid microevolution of migratory behaviour in a wild bird species. Nature, 360, 668-670.
  • BirdLife International, (2019). Lanius nubicus (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2019: e.T22705099A155574857.
  • Birks, H. J. B., & Willis, K. J. (2008). Alpines, trees, and refugia in Europe. Plant Ecology & Diversity, 1(2), 147-160.
  • Boyer, S. L., Markle, T. M., Baker, C. M., Luxbacher, A. M., & Kozak, K. H. (2016). Historical refugia have shaped biogeographical patterns of species richness and phylogenetic diversity in mite harvestmen (Arachnida, Opiliones, Cyphophthalmi) endemic to the Australian Wet Tropics. Journal of Biogeography, 43(7), 1400-1411.
  • Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews, 27(27-28), 2576-2585.
  • Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T., & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323(5915), 785-789.
  • Carbonbrief, (2019). CMIP6: the next generation of climate models explained. [Online]. Available: https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained. [Accessed Dec. 28, 2019].
  • Chown, D. (2003). The Turkestan Shrike in Somerset. Birding World 16 (6): 244-247.
  • Dobrowski, S. Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global change biology, 17(2), 1022-1035.
  • Doswald, N., Willis, S.G., Collingham, Y.C., Pain, D.J., Green, R.E., Huntley, B. (2009). Potential impacts of climatic change on the breeding and nonbreeding ranges and migration distance of European Sylvia warblers. Journal of Biogeography, 36, 1194 1208.
  • Eaton, M.A., Noble, D.G., Hearn, R.D., Grice, P.V., Gregory, R.D., Wotton, S., Ratcliffe, N., Hilton, G.M., Rehfisch, M.M., Crick, H.Q.P., & Hughes, J. (2005). The state of the UK's birds. BTO, RSPB, WWT, CCW, EN, EHS, SNH, Sandy, Bedfordshire.
  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57.
  • Evangelista, P. H., Kumar, S., Stohlgren, T. J., & Young, N. E. (2011). Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262(3), 307-316.
  • Evcin, O., Kucuk, O., & Akturk, E. (2019). Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environmental monitoring and assessment, 191(11), 1-13.
  • Fordham, D. A., Watts, M. J., Delean, S., Brook, B. W., Heard, L. M., & Bull, C. M. (2012). Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence of an endangered lizard. Global change biology, 18(9), 2743-2755.
  • Gaiji, S., Chavan, V., Ariño, A. H., Otegui, J., Hobern, D., Sood, R., & Robles, E. (2013). Content assessment of the primary biodiversity data published through GBIF network: status, challenges and potentials. Biodiversity Informatics, 8(2).
  • Göğüş, F., Özkaya, M. T., & Ötleş, S. (2009). Zeytinyağı. Ankara: Eflatun Yayınevi.
  • Gregory, R.D., Van Strien, A., Vorisek, P., Meyling, A.W.G., Noble, D.G., Foppen, R.P.B., Gibbons, D.W., (2005). Developing indicators for European birds. Proceedings of the Royal Society B Biological Sciences, 360, 269- 288.
  • Gregory, J. M., Willis, S. G., Juiget, F., Vorisek, P., Klvanova, A., Van Strien, A., Huntley, B., Collingham, Y.C., Covet, D. & Green, R.E. (2009). An indicator of the impact of climatic change on European bird populations. PLoS ONE, 4, e4678
  • Hijmans, R. J., ve Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global change biology,12(12), 2272 2281.
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.
  • Karaardıç, H., Erdoğan, A. (2019). Spring migration phenology of wheatear species in Southern Turkey. Acta Biologica Turcica, 32(2), 65-69.
  • Keppel, G., Van Niel, K. P., Wardell‐Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Franklin, S. E. (2012). Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 21(4), 393 404.
  • Kıraç, A., & Mert, A., (2019). Will Danford’s Lizard Become Extinct in the Future? Polish Journal of Environmental Studies, 28(3), 1741-1748.
  • King, D. (2005). Climate change: the science and the policy. Journal of Applied Ecology, 42, 779-783.
  • Loarie, S. R., Carter, B. E., Hayhoe, K., McMahon, S., Moe, R., Knight, C. A., & Ackerly, D. (2008). Climate change and the future of California's endemic flora. PloS one, 3(6), e2502.
  • McCarty, J.P. n(2001). Ecological consequences of recent climate change. Conservation Biology, 15, 320 331.
  • Meier, C. M., Karaardıç, H., Aymí, R., Peev, S. G., Witvliet, W., & Liechti, F. (2020). Population‐specific adjustment of the annual cycle in a super‐swift trans Saharan migrant. Journal of Avian Biology, 51(11).
  • Møller, Anders Pape, Wolfgang Fiedler, and Peter Berthold, (2010). Effects of climate change on birds. OUP Oxford. Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18,521–531.
  • Oteros, J. (2014). Modelización del ciclo fenológico reproductor del olivo (PDF) (Tesis Doctoral) (in Spanish). Córdoba, España: Universidad de Córdoba.
  • Özdemir, Serkan; Özkan, Kürşad; Mert Ahmet, (2020). Ekolojik Bakış Açısı İle İklim Değişimi Senaryoları. Biyolojik Çeşitlilik ve Koruma, 13.3: 361-371. (a)
  • Özdemir, S., Gülsoy, S., & Ahmet, M. (2020). Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 20(2), 133-142. (b)
  • Perkta, U. (2004). Breeding shrike populations in Turkey: status in 1998–2003. BIOLOGICAL LETT. 2004, 41(2): 7175. Hacettepe University, Faculty of Science, Department of Biology (Zoology Section), 06532 Beytepe Ankara, Turkey. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37.
  • Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P., Fernandez- Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W., Chini, L. (2010). Scenarios for global biodiversity in the 21st century. Science 330 (6010), 1496–1501.
  • Phillips, S. J.; Anderson, R. P.; Schapire, R. E. (2006). Maximum entropy modelling of species, geographic distributions. Ecological modelling, 190(3-4), 231-259,
  • Rodenhouse, N. L., Matthews, S. N., McFarland, K. P., Lambert, J. D., Iverson, L. R., Prasad, A., Holmes, R. T. (2008). Potential effects of climate change on birds of the Northeast. Mitigation and adaptation strategies for global change, 13(5), 517-540.
  • Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J., Sutherland, W. J., Svenning, J. C. (2011). The influence of Late Quaternary climate-change velocity on species endemism. Science, 334(6056), 660-664.
  • Sinervo, B., Lara Reséndiz, R. A., Miles, D. B., Lovich, J. E., Ennen, J. R., Müller, J., & Sites Jr, J. W. (2017). Climate Change and Collapsing Thermal Nivhes of Mexican Endemic Reptiles.https://escholarship.org/uc/item/4xk077hp
  • Süel, H. (2019). Türkiye'de leylek (Ciconia ciconia Linnaeus, 1758) dağılımının iklim değişikliğine göre kestirimi. Türkiye Ormancılık Dergisi, 20(3), 243-249.
  • Walther, G.R., Berger, S., Sykes, M.T. (2005). An ecological 'footprint' of climate change. Proceedings of the Royal Society B-Biological Sciences, 272, 1427-1432.
  • Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh Guldberg, O., Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 41 389-395.
  • Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19729-19736.
  • Wilkins, M. R., Karaardıç, H., Vortman, Y., Parchman, T. L., Albrecht, T., Petrželková, A., & Safran, R. J. (2016). Phenotypic differentiation is associated with divergent sexual selection among closely related barn swallow populations. Journal of Evolutionary Biology, 29(12), 2410-2421.
Journal of Anatolian Environmental and Animal Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Bülent VEREP
Sayıdaki Diğer Makaleler

Model Organizma Galleria mellonella L.’da Bakır Nanopartiküllerinin Oksidatif Stres Üzerine Etkilerinin Değerlendirilmesi

Benay TUNÇSOY

Maskeli Örümcek Kuşunun (Lanius nubicus, Licthenstein 1823) İklim Değişimi Etkisi Altındaki Dağılımı

Akın KIRAÇ, Emrah ERTUĞRUL

Organik bileşik olarak Altın çilek (Physalis peruviana) kabuk ve meyve özütü ile çiçek şekilli hibrit nanoyapıların gıda patojenleri üzerine antibakteriyel etkisinin incelenmesi ve bu nanoyapıların morfolojik karşılaştırılması

Ayşe DEMİRBAŞ

Gökkuşağı Alabalığı (Oncorhynchus mykiss, L.) Yemlerine Eklenen Farklı Oranlardaki Kuşburnu (Rosa canina, L.) Yağının Büyüme Performansına Etkisi

Obey ALNAIEM, Hamdi AYDIN

Giresun Kıyı Şeridindeki Patella sp. nin Et Kalitesi Değişiminin Mevsimsel Olarak Belirlenmesi

Cengiz MUTLU, Fulya Gaye ŞEN, Selin KALKAN

Toprak ve Bitkilerde Ağır Metal Kirliliğinin Araştırılması: Bayburt İli Örneği

Sinan KUL, Volkan GÜL, İbrahim CENGİZ

Gökkuşağı Alabalığının (Oncorhynchus mykiss) Biyokimyasal Bileşimi Üzerine Whey proteinin Etkileri

Mikail ÖZCAN, Ünal İSPİR, Ayşe ŞAHİN

Selenyum ve Zeolitin Nil Tilapyası Oreochromis niloticus’ta (Linnaeus, 1758) Doku Cıva Birikimi Üzerine Etkileri

Özge FIRAT, Ferit KARGIN

Kestane Kabuğu, Isırgan Otu, Kivi Meyvesi ve Narenciye Özütlerinin Antioksidan Potansiyelleri ve Bazı Balık Patojenlerine Karşı Antimikrobiyel Etkileri

Orhan KOBYA, Büşra KARA, Ecren UZUN YAYLACI, Emre ÇAĞLAK

Havza ve Arazi Karakteristiklerinin Coğrafi Bilgi Sitemleri (CBS) Yardımıyla Değerlendirilmesi: Pazar Hemşin Deresi Havzası Örneği

Ali Erdem ÖZÇELİK, Turan YUKSEK, Filiz YÜKSEK, Bülent VEREP