RADIONUCLIDES AND WIND EROSION

Rüzgar erozyonu yıllık yağışı 500 mm den düşük, Iğdır-Aralık örneği gibi, 500 milyon hektara yayılan kurak ve yarı kurak bölgelerde etkildir. İz elementleri ve izotopları dünyanın her bölgesine yayılmış durumdadır. İnsanlık 1945 yılında New Mexico, ABD’de gerçekleştirilen ilk nükleer deneme ile nükleer çağ ile tanışmıştır. Sürüklenme, sıçrama ve havada asılı kalma rüzgar erozyonunun topraklar üzerindeki üç farklı etkisidir. 100 µm den daha küçük toprak parçacıkları ve bunlara bağlanmış iz elementleri çok uzak mesafelere taşınmaktadır. Bu olaylar farklı bilim dalları tarafından farklı bir şekilde değerlendirilir. Bazı iz elementlerinin hareketleri rüzgarla yer değiştiren toprak parçacıklarının izlenmesinde önemli bir katkı sağlamaktadır. 137Cs, yer değiştiren toprak parçacıklarının izlenmesinde en yaygın kullanılan insan yapımı radyoizotop olmasına rağmen,  239+240Pu son zamanlarda kullanılmaya başlanan bir iz elementidir. Bu çalışmada Aralık-Iğdır-Türkiye’deki rüzgar erozyon sahasına vurgu yapılmıştır.

RADIONUCLIDES AND WIND EROSION

Wind erosion is effective on 500 million ha of land in arid and semi-arid regions where annual precipitation is less than 500 mm such as Aralik-Igdir, Turkey; whereas, both naturally and artificially radionuclides are almost spread over the whole earth. Humankind inevitably encountered radionuclides in July, 1945 when nuclear era started by tentatively making burst a blast in New Mexico, USA. Creep, saltation, and suspension are three different effects of wind erosion on soils. Quite small particles (<100 µm) are transported over a great distance and kept aloft for a long time. Radionuclides are also moved and carried away as soil-bonded ones and radioactive aerosols due to wind erosion caused by strong winds. This fact is evaluated as different by each science. Some radionuclide movements are an important method for exploring soil redistribution by wind due to their strongly adsorbing to soil particles. Although 137Cs is the most commonly preferred anthropogenic radioisotope used to assess soil redistribution rates, 239+240Pu has been recently started to be used as a tracer. I want to emphasize that wind erosion area of Aralik-Igdir, Turkey is waiting to be explored.

___

  • Alewell, C., Meusburger, K., Juretzko, G., Mabit, L., Ketterer, M.E., 2014. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere, 103, 274-280.
  • Al-Masri, M.S., 2006. Vertical distribution and inventories of 137Cs in the Syrian soils of the eastern Mediterranean region. J. Environ. Radioact., 86, 187-198.
  • Ayto, J. 1989. “20th Century Words”, Cambridge University Press. 640 pages.
  • Baker, J.T., 2007. Cotton seedling abrasion and recovery from windblown sand. Agron. J., 99, 556-561.
  • Ballantyne, E.E., 1961. The veterinarian and thermonuclear warfare. Can. Vet. J., 2, 19-29.
  • Beasley, T.M., Kelley, J.M., Olandini, K.A., Bond, L.A., Aarkrog, A., Trapexnikov, A.P., Pozolotina, V.N., 1998. Isotopic Pu, U, and Np signatures in soils of Semipalatinsk-21, Kazakh Republic and the southern Urals. Russ. J. Environ. Radioact., 39, 215-230.
  • Best, L., Rodrigues, G., Velker, V. 2013. “1.3”. Radiation Oncology Primer and Review. Demos Medical Publishing. ISBN 978-1620700044.
  • Bihari, A., Dezso, Z., 2008. Examination of the effect of particle size on the radionuclide content of soils. J. Environ. Radioact., 99, 1083-1089.
  • Bossew, P., Lettner, H., Hubmer, A., Erlinger, C., Gastberger, M., 2007. Activity ratios of 137Cs, 90Sr, and 239+240Pu in environmental samples. J. Environ. Radioact. 97, 5-19.
  • Chappell, A., 1999. The limitations of using 137Cs for estimating soil redistribution in semi-arid environments. Geomorphology, 29, 135-152.
  • Chappell, A., McTainsh, G., Leys, J., Strong, C., 2003. Simulations to optimize sampling of aeolian sediment transport in space and time for mapping. Earth Surf. Process. Landforms, 28, 1223-1241.
  • de Jong, E., Villar, H., Bettany, J.R., 1982. Preliminary investigations on the use of 137Cs to estimate erosion in Saskatchewan. Can. J. Soil Sci., 62, 673-683.
  • Everett, S.E., Tims, S.G., Hancock, G.J., Bartley, R., Fifield, L.K., 2008. Comparison of Pu and Cs-137 as tracers of soil and sediment transport in a terrestrial environment. J. Environ. Radioact., 99, 383-393.
  • Farmer, G.L., 1983. The effects of dust on plants: a review. Environ. Pollut., 79, 63-75.
  • Funk, R., Li, Y., Hoffman, C., Reiche, M., Zhang, Z., Li, J., Sommer, M., 2011. Using 137Cs to estimate wind erosion and dust deposition on grassland in Inner Mongolia selection of a reference site and description of the temporal variability. Plant Soil. http://dx.doi.org/10.1007/s11104-011-0964-y, online first, 15pp.
  • Goossens, D., Buck, B., 2009. Dust dynamics and off-road vehicle trails: measurements of 16 arid soil types, Nevada, USA. J. Environ. Management, 90, 3458-3469.
  • Haghiri, F., 1964. Strontium-90 accumulation by some vegetable crops. Ohio J. Sci., 64, 371-374.
  • Hala, J., Navratil, J.R., 2003. Radioactivity, Ionizing Radiation, and Nuclear Energy. Konvoj, Brno, Czech Republic, 465 pp.
  • Karaoglu, M., Şimşek, U., Tohumcu, F., Erdel, E., 2017. Determining surface soil properties of wind erosion area of Igdir-Aralik and estimating the soil loss. Fresenius Environmental Bulletin, 26(5), 3170-3175.
  • Karaoglu, M., 2012. Evaluation of Igdir soils in terms of erosion (Turkish). Iğdır University JIST, 2(1), 23-30. Iğdır, Turkey.
  • Keating, J., 2003. Dust – and troubles in the wind. Erosion Control, 10, 56-59.
  • Kelley, J.M., Bond, L.A., Beasley, T.M., 1999. Global distribution of Pu isotopes and 237Np. Sci. Total Environ., 237(238), 483-500.
  • Ketterer, M.E., Hafer, K.M., Mietelski, J.W., 2004. Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry. J. Environ. Radioact., 73, 183-201.
  • Ketterer, M.E., Zhang, J., Yamada, M., 2011. Application of transuranic as tracers and chronometers in the environment. In: Baskaran, M. (Ed.), Handbook of Environmental Isotope Geochemistry, Advance in Isotope Geochemistry. Springer, Berlin, Heidelberg, Germany, pp. 395-417.
  • Kudo, A., Zheng, J., Koerner, R.M., Fisher, D.A., Santry, D.C., Mahara, Y., Sugahara, M., 1998. Global transport rates of 137Cs and 239+240Pu originating from the Nagasaki A-bomb in 1945 as determined from analysis of Canadian Arctic ice cores. J. Environ. Radioact., 40, 289-298.
  • Litaor, M.I., Ibrahim, S.A., 1996. Plutonium association with selected solid phases in soils of Rocky Flats, Colorado, using sequential extraction technique. J. Environ. Qual., 25, 1144-1152.
  • Lyles, L., Tatarko, J., 1986. Wind erosion effects on soil texture and organic matter. Journal of. Soil Water Conservation, 41, 191-193.
  • Loveland, W., Morrissey, D., Seaborg, G.T. 2006. Modern Nuclear Chemistry. Wiley-Interscience., p. 57. ISBN 0-471-11532-0.
  • Matsunami, T., Mizohata, A., Mamuro, T., Tsujimoto, T., Katsurayama, Y., 1988. Measurement of plutonium isotopic activity ratio in low level plutonium samples. 7th. IRPA International Congress, April 1988. S1-170.
  • McCarty, G.W., Ritchie, J.C., 2002. Impact of soil movement on carbon sequestration in agricultural ecosystems. Environ. Pollut., 116, 423-430.
  • Mouat, M.C.H., 1960. Interspecific differences in strontium uptake by pasture plants as a function of root cation-exchange capacity. Nature, 188, 513-514.
  • Muminov, T., Nasyrov, M., Van Pelt, R.S., Safarov, A.A., Halikulov, A.V., Hushmurodov, S.S., 2010. Radionuclides in soils along a mountain–basin transect in the Koratepa Mountains of Uzbekistan. J. Soil Water Conserv., 65, 117A-121A.
  • Murray, A.S., Marten, R., Johnston, A., Martin, P., 1987. Analysis for naturally occurring radionuclides at environmental levels by gamma spectrometry. J. Radianal. Nucl. Chem., 115, 263-288.
  • Neff, J.C., Reynolds, R.L., Belknap, J., Lamothe, P., 2005. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol. Appl., 15, 87-95.
  • Osaki, S., Sugihara, S., Maeda, Y., Osaki, T., 2007. Mixing of atmospheric 210Pb and 7Be and 137Cs and 90Sr fission products in four characteristic soil types. J. Radioact. Nucl. Chem., 272, 135-140.
  • Parekh, P.P., Semkow, T.M., Torres, M.A., Haines, D.K., Cooper, J.M., Rosenberg, P.M., Kitto, M.E., 2006. Radioactivity in Trinitite six decades later. J. Environ. Radioact., 85, 103-120.
  • Petrucci, R.H., Harwood, W.S., Herring, F.G. 2002. General Chemistry (8th ed., Prentice-Hall 2002), p.1025-1026.
  • Quang, N.H., Long, N.Q., Lieu, D.B., Mai, T.T., Ha, N.T., Nhan, D.D., Hien, P.D., 2004. 239+240Pu, 90Sr, and 137Cs inventories in surface soils of Vietnam. J. Environ. Radioact., 75, 329-337.
  • Ritchie, J.C., McHenry, J.R., 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J. Environ. Qual., 19, 215-233.
  • Ritchie, J.C., Herrick, J.E., Ritchie, C.A., 2003. Variability in soil redistribution in the northern Chihuahuan Desert based on 137Cesium measurements. J. Arid Environ., 55, 737-746.
  • Ritchie, J.C., Ritchie, C.A., 2007. Bibliography of publications of 137Cesium studies related to erosion and sediment deposition. In: USDA–ARS Hydrology and Remote Sensing Laboratory Occasional Paper HRSL-2007-01. USDA–Agricultural Research Service, Beltsville, MD, USA.
  • Robbins, J.A., 1985. Great Lakes regional fallout source functions. In: NOAA Tech Memorandum ERL GLERL-56. Great Lakes Environmental Research Laboratory, Ann Arbor, MI.
  • Saito-Kokubu, Y., Yasuda, K., Magara, M., Miyamoto, H., Sakurai, S., Usuda, S., Yamazaki, H., Mitamura, M., Yoshikawa, S., 2007. Distribution of Plutonium isotopes and 137Cs found in the surface soils of Nagasaki. Jpn. J. Geosci., 50, 7-13.
  • Sharratt, B., Lauer, D., 2006. Particulate matter concentration and air quality affected by windblown dust in the Columbia Plateau. J. Environ. Qual., 35, 2011-2015.
  • Sharratt, B., Wendling, L., Feng, G., 2010. Windblown dust affected by tillage intensity during summer fallow. Aeolian Res. 2, 129-134. Schuller, P., Walling, D.E., Sepulveda, A., Castillo, A., Pino, I., 2007. Changes in soil erosion associated with the shift from conventional tillage to a no-tillage system documented using 137Cs measurements. Soil Till. Res., 94, 183-192.
  • Sigurgeisson, M.A., Arnalds, O., Palsson, S.E., Howard, B.J., Gudnason, K., 2005. Radiocaesium fallout behavior in volcanic soils of Iceland. J. Environ. Radioact., 79, 39-53.
  • Simon, S.L., Bouville, A., Beck, H.L., 2004. The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing. J. Environ. Radioact., 74, 91-105.
  • Stabin, M.G. 2007. "3". Radiation Protection and Dosimetry: An Introduction to Health Physics. Springer. Doi: 10.1007/978-0-387-49983-3. ISBN 978-0387499826.
  • Stroosnijder, L., 2005. Measurement of erosion: is it possible? Catena, 64, 162-173.
  • Vajda, N., Kim, C.K., 2010. Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J. Radioanal. Nucl. Chem., 283, 203-223.
  • Van Pelt, R.S., Zobeck, T.M., 2007. Chemical constituents of fugitive dust. Environ. Monit. Assess., 130, 3-16.
  • Van Pelt, R.S. 2013. Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind I: Historic use of 137Cs. Aeolian Research, 9, 89-102.
  • Van Pelt, R.S., Ketterer, M.E., 2013. Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind II: The potential for future use of 239+240Pu. Aeolian Research, 9, 103-110.
  • Vose, P.B., Koontz, H.V., 1960. The uptake of strontium and calcium from soils by grasses and legumes and the possible significance in relation to 90Sr fallout. Hilgardia, 29, 575-585.
  • Wallbrink, P.J., Murray, A.S., 1996. Determining soil loss using the inventory ratio of excess lead-210 to cesium-137. Soil Sci. Soc. Am. J., 60, 1201-1208.
  • Walling, D.E., 1998. Use of 137Cs and other fallout radionuclides in soil erosion investigations: progress, problems, and prospects. In: IAEA (Ed.), Use of 137Cs in the Study of Soil Erosion and Sedimentation. IAEA-TECDOC-1028. International Atomic Energy Agency, Vienna, Austria, 39-62.
  • Whicker, R.D., Ibrahim, S.A., 2006. Vertical migration of 134Cs bearing soil particles in arid soils: implications for plutonium redistribution. J. Environ. Radioact., 88, 171-188.
  • Wilcken, K.M., Fifield, L.K., Barrows, T.T., Tims, S.G., Gladkis, L.G., 2008. Nucleogenic 36Cl, 236U, and 239Pu in uranium ores. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3614-3624.
  • Zobeck, T.M., Fryrear, D.W., 1986. Chemical and physical characteristics of windblown sediment: II. Chemical characteristics and total soil and nutrient discharge. Trans. ASAE, 29, 1037-1041.