Veteriner cerrahide lokal kök hücre uygulamaları

Kök hücreler; organizmada organların ve dokuların yapısını oluşturan ana hücrelerdir. Bu sebeple ihtiyaç halinde hasar gören tüm doku ve organlara dönüşüm sağlayarak bunların onarılmasında ciddi rol almaktadır. İnsan hekimliğinde son 10 yılda yaygın bir kullanım alanı bulan kök hücre tedavisi, günümüzde veteriner tıbbında da uygulanmaktadır. Mezenkimal kök hücreler hayvanlarda pek çok hastalığın tedavisinde kullanılmaktadır. Steril ortamlarda kemik iliği, kordon kanı, ve yağ dokudan elde edildikten sonra sıvı azot tanklarında dondurularak saklanmaktadır. Hastaya uygulama öncesinde enjeksiyona hazır hale getirilerek taze olarak verilmektedir. Kök hücreler, hayvanlara lokal enjeksiyon ya da intra venöz yolla uygulanmaktadır. Viral ve enfeksiyöz hastalıklarda canlıda immun sistemin güçlendirilmesi amacıyla intravenöz yolla mezenkimal kök hücreler kullanılmaktadır. Çeşitli ortopedik, nörolojik ve oftalmolojik hastalıkların tedavisinde ise kök hücreler lokal olarak uygulanmaktadır. Sunulan bu çalışmada, 8 köpek, 6 kedi üzerinde toplam 14 vakaya ait veriler yer almaktadır. 7 ortopedik, 5 nörolojik, 2 oftalmolojik vakada lokal yolla uygulanan mezenkimal kök hücre tedavisi ve elde edilen sonuçlar değerlendirilmiştir. Ortopedik ve nörolojik vakalarda büyük oranda iyileşme sağlandığı, oftalmolojik olgularda da belirgin düzelmeler olduğu saptanmıştır.

In Veterinary surgery local stem cell applications

Stem cells; they are the main cells that form the structure of organs and tissues in the organism. For this reason, it takes a serious role in repairing all tissues and organs that are damaged when needed. Stem cell therapy, which has found widespread use in human medicine in the last 10 years, is also applied in veterinary medicine today. Mesenchymal stem cells are used in the treatment of many diseases in animals. It is obtained from bone marrow, cord blood, and adipose tissue in sterile environments and stored in liquid nitrogen tanks by freezing. It is given to the patient freshly by making it ready for injection before administration. Stem cells are administered to animals by local injection or intravenous route. In order to strengthen the immune system in vivo in viral and infectious diseases, intravenous mesenchymal stem cells are used. Stem cells are applied locally in the treatment of various orthopedic, neurological and ophthalmological diseases. In this presented study, data of 14 cases on 8 dogs and 6 cats are included. Locally applied mesenchymal stem cell therapy in 7 orthopedic, 5 neurological and 2 ophthalmologic cases and the results obtained were evaluated. It was determined that a great improvement was achieved in orthopedic and neurological cases, and significant improvements were also observed in ophthalmological cases.

___

  • Anandacoomarasamy, A., & March, L. (2010). Current evidence for osteoarthritis treatments. Therapeutic advances in musculoskeletal disease, 2(1), 17-28.
  • Borakati, A., Mafi, R., Mafi, P., & Khan, W. S. (2018). A systematic review and meta-analysis of clinical trials of mesenchymal stem cell therapy for cartilage repair. Current stem cell research & therapy, 13(3), 215-225.
  • Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Cao, Q., Xu, X. M., DeVries, W. H., Enzmann, G. U., Ping, P., Tsoulfas, P., ... & Whittemore, S. R. (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Journal of Neuroscience, 25(30), 6947-6957.
  • Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., ... & Anderson, A. J. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences, 102(39), 14069-14074.
  • da Costa, B. R., Reichenbach, S., Keller, N., Nartey, L., Wandel, S., Jüni, P., & Trelle, S. (2017). Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. The Lancet, 390(10090), e21-e33.
  • Du, Y., Carlson, E.C., Funderburgh, M.L., Birk, D.E., Pearlman, E., Guo, N., Kao, W.W., & Funderburgh, J.L. (2009). Stem cell therapy restores transpar- ency to defective murine corneas. Stem Cells 27, 1635–1642.
  • Griffith, M., Alarcon, E. I., & Brunette, I. (2016). Regenerative approaches for the cornea. Journal of internal medicine, 280(3), 276-286.
  • Hofstetter, C. P., Schwarz, E. J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D. J., & Olson, L. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences, 99(4), 2199-2204.
  • Iwanami, A., Kaneko, S., Nakamura, M., Kanemura, Y., Mori, H., Kobayashi, S., & Okano, H. (2005). Transplantation of human neural stem cells for spinal cord injury in primates. Journal of neuroscience research, 80(2), 182-190.
  • Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C. M., & Fehlings, M. G. (2006). Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. Journal of Neuroscience, 26(13), 3377-3389.
  • Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., & Steward, O. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience, 25(19), 4694-4705.
  • Li, Y., Field, P. M., & Raisman, G. (1997). Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science, 277(5334), 2000-2002.
  • Liu, Y., Kim, D., Himes, B. T., Chow, S. Y., Schallert, T., Murray, M., & Fischer, I. (1999). Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. Journal of Neuroscience, 19(11), 4370-4387.
  • McDonald, J. W., Liu, X. Z., Qu, Y., Liu, S., Mickey, S. K., Turetsky, D., ... & Choi, D. W. (1999). Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature medicine, 5(12), 1410-1412.
  • Moroni L, Fornasari PM (2013). Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tis- sues. J Cell Physiol, 228, 680–687
  • Ogawa, Y., Sawamoto, K., Miyata, T., Miyao, S., Watanabe, M., Nakamura, M., & Okano, H. (2002). Transplantation of in vitro‐expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. Journal of neuroscience research, 69(6), 925-933.
  • Perk, C. (2022). Hayvanlarda Kök Hücre Tedavisi Hakkında Her Şey. Retrieved from https://www.oggusto.com/pets/hayvanlarda-kok-hucre-tedavisi
  • Syed‐Picard, F. N., Du, Y., Hertsenberg, A. J., Palchesko, R., Funderburgh, M. L., Feinberg, A. W., & Funderburgh, J. L. (2018). Scaffold‐free tissue engineering of functional corneal stromal tissue. Journal of tissue engineering and regenerative medicine, 12(1), 59-69.
  • Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., & Snyder, E. Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences, 99(5), 3024-3029.
  • Tuszynski, M. H., Peterson, D. A., Ray, J., Baird, A., Nakahara, Y., & Gages, F. H. (1994). Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Experimental neurology, 126(1), 1-14.
  • Undale, A., Fraser, D., Hefferan, T., Kopher, R.A., Herrick, J., Evans, G.L., Li, X., Kakar, S. et al. (2011). Induction of fracture repair by mesenchymal cells derived from human embryonic stem cells or bone marrow. Journal of Orthopaedic Research, 29(12), 1804-11.
  • Xu, L., Yan, J., Chen, D., Welsh, A. M., Hazel, T., Johe, K., & Koliatsos, V. E. (2006). Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation, 82(7), 865-875.
  • Xu, X. M., Guénard, V., Kleitman, N., Aebischer, P., & Bunge, M. B. (1995). A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Experimental neurology, 134(2), 261-272.
Journal of advances in vetbio science and techniques-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: İlker ÇAMKERTEN