Sentinel Görüntüleri Kullanılarak Heyelanların Modellenmesi: 2020 Gjerdrum (Norveç) Heyelanı Örneği

Heyelan veya zemin çökmesi, bir yamacı oluşturan kaya, toprak veya zemin kütlesinin kayan malzemenin özellikleri, boyutu ve kayma hızına göre çok farklı ölçek, model ve morfolojide gelişen bir doğa olayıdır. Bu çalışmada, 30.12.2020 tarihinde Norveç’in Gjerdrum kentinin Ask kasabasında meydana gelen heyelan sonucunda bölgede yüzey çökmesi biçiminde oluşan jeomorfolojik etkiyi modellemenin yanı sıra toprak kitlesindeki değişimin analizi gerçekleştirmiştir. Bu amaçla, Avrupa Birliği Copernicus programının Açık Erişim Merkezi Sentinel-1 uydu görüntüleri kullanılmıştır. Heyelanın meydana geldiği tarihinden önce ve sonra farklı tarihlerindeki uydu görüntüleri üzerinden çalışma gerçekleştirilmiştir. Farklı tarihte elde edilen aynı alan üzerindeki aynı geometriye sahip ve sensör modu IW olan uydu görüntüleri Sentinel-1’den indirilmiş ve Sentinel Uygulama Platform (SNAP) yazılımı kullanılarak değerlendirilmiştir. Yazılımdan oluşturulan DInSAR verileri de kullanılarak çökme analiz sonuçları elde edilmiştir. Çalışma sonucunda, özellikle bölgede önceki yıllarda yer alan akarsu yataklarında değişimler ve bu özelliklere bağlı olarak değişen morfolojik özellikler ile bölgede 2000li yıllardan bu yana yaşanan eğim değişiklikleri heyelanı oluşturan sebepler olarak öne çıkmaktadır. Yapılan çalışma neticesinde elde edilen sonuçlar ile meydana gelen toprak kayması miktarının örtüştüğü açıktır. İnterferometrik Geniş Alan (IW) modunun kullanılabilirliği ile Sentinel 1, interferometrik sentetik açıklıklı radar (InSAR) tekniklerini kullanarak yüzey çökmesini izleme yeteneğine sahip olduğu ortaya çıkarılmıştır.

Modeling of Landslides Using Sentinel Images: The Case of Gjerdrum Landslide (Norway) in 2020

In this study, besides modeling the geomorphological effect in the form of surface collapse in the region as a result of the landslide that occurred in the Ask town of Gjerdrum, Norway on 30.12.2020, the change in the soil mass was analyzed. For this purpose, the Open Access Center Sentinel-1 satellite images of the Copernicus program of the European Union were used. The study was carried out on satellite images dates 18.12.2020, 24.12.2020 before the landslide occured and after on the satellite images dated 30.12.202. Satellite images with the same geometry and sensor mode IW on the same area obtained on different dates were downloaded from Copernicus Open Access Center and evaluated using the Sentinel Application Platform (SNAP) software. Slump analysis results were obtained by using DInSAR data generated from the software. As a result of the study, especially the changes in the river beds in the region in the previous years and the morphological features that have changed depending on these features, as well as the slope changes experienced in the region since the 2000s come to the fore as the causes of the landslide. The results show that the amount of landslides that occured overlap. With the availability of the interferometric Wide Field (IW) mode the Sentinel-1 is interferometric synthetic aperture radar (InSAR) techniques have been found to be capable of monitoring surface subsidence.

___

  • AFAD, (2015) Bütünleşik Tehlike Haritalarının Hazırlanması Heyelen Temel Klavuzu, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı.
  • Amitrano, D., Di Martino, G., Iodice, A., Riccio, D., & Ruello, G. (2018). Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Transactions on Geoscience and Remote Sensing, 56(6), 3290-3299. Doi: 10.1109/TGRS.2018.2797536
  • Babagiray, S., & Kalkan, K. (2021). Yağışların tarım alanlarında sebep olduğu göllenmelerin Sentinel-1 uydu görüntüleri ile analizi. Jeodezi ve Jeoinformasyon Dergisi, 8(2), 145-160. Doi: 10.9733/JGG.2021R0011.T
  • Bourbig, M., Johnsen, H. ve Piantanida, R., (2016). Sentinel-1 Product Definition, ESA.
  • Carlà T, Intrieri E, Raspini F, Bardi F, Farina P, Ferretti A, Colombo D, Novali F, Casagli N (2019) Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci Rep 9:1. Doi: https://doi.org/10.1038/s41598-019-50792-y
  • Chaturvedi, S. K., Banerjee, S., & Lele, S. (2020). An assessment of oil spill detection using Sentinel 1 SAR-C images. Journal of Ocean Engineering and Science, 5(2), 116-135. Doi: https://doi.org/10.1016/j.joes.2019.09.004
  • Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent scatterer interferometry: A review, ISPRS J. Photogramm., 115, 78–89. Doi: https://doi.org/10.1016/j.isprsjprs.2015.10.011
  • Czikhardt, R., Papco, J., Bakon, M., Liscak, P., Ondrejka, P., & Zlocha, M. (2017). Ground stability monitoring of undermined and landslide prone areas by means of sentinel-1 multi-temporal InSAR, case study from Slovakia. Geosciences, 7(3), 87. Doi: https://doi.org/10.3390/geosciences7030087
  • Dabiri, Z., Hölbling, D., Abad, L., Helgason, J. K., Sæmundsson, Þ., & Tiede, D. (2020). Assessment of landslide-induced geomorphological changes in Hítardalur Valley, Iceland, using Sentinel-1 and Sentinel-2 data. Applied Sciences, 10(17), 5848. Doi: https://doi.org/10.3390/app10175848
  • Dai, C., Li, W., Wang, D., Lu, H., Xu, Q., & Jian, J. (2021). Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu county, Gansu province, Northwest China. Journal of Earth Science, 32(5), 1092-1103. Doi: https://doi.org/10.1007/s12583-020-1380-0
  • Erener, A., & Lacasse, S. (2007). Heyelan duyarlılık haritalamasında CBS kullanımı. TMMOB Coğrafi Bilgi Sistemleri Kongresi, 30.
  • Eronat, A. H. (2019). Farklı kaynaklı uydu görüntüleri kullanarak Bakü (Azerbaycan) kıyılarındaki petrol kirliliğinin gözlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21(61), 47-54. Doi: 10.21205/deufmd.2019216105
  • Grebby S, Sowter A, Gluyas J, Toll D, Gee D, Athab A, Girindran R (2021) Advanced analysis of satellite data reveals ground deformation precursors to the Brumadinho Tailings Dam collapse. Communications Earth & Environment. 2:1. Doi: https://doi.org/10.1038/s43247-020-00079-2 |
  • Günçe, H. B. (2019). Batı Antalya Heyelanlarının Sar İnterferometrisi ile İncelenmesi. Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., ... & Casagli, N. (2018). The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides, 15(1), 123-133. Doi: 10.1007/s10346-017-0915-7
  • L’heureux, J. S. (2012). A study of the retrogressive behaviour and mobility of Norwegian quick clay landslides. Landslide and engineered slopes: protecting society through improved understanding. Taylor & Francis Group, London, 981-988.
  • Li, Y., Jiang, W., Zhang, J., Li, B., Yan, R., & Wang, X. (2021). Sentinel-1 SAR-Based coseismic deformation monitoring service for rapid geodetic imaging of global earthquakes. Natural Hazards Research, 1(1), 11-19. Doi: https://doi.org/10.1016/j.nhres.2020.12.001
  • Nava, L., Monserrat, O., & Catani, F. (2021). Improving landslide detection on SAR data through deep learning. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. Doi: 10.1109/LGRS.2021.3127073
  • Necula, N., Niculiță, M., Tessari, G., & Floris, M. (2017, May). InSAR analysis of Sentinel-1 data for monitoring landslide displacement of the north-eastern Copou hillslope, Iaşi city, Romania. In Proceedings of Romanian geomorphology symposium (Vol. 1, pp. 11-14). Doi: 10.15551/prgs.2017.85
  • Penna, I., & Solberg, I. L. (2021). Landscape changes and bedrock reconstruction in Gjerdrum area. Methodological approach and main results.
  • Potin, P., Bargellini, P., Laur, H., Rosich, B., & Schmuck, S. (2012, July). Sentinel-1 mission operations concept. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 1745-1748). IEEE. Doi: 10.1109/IGARSS.2012.6351183
  • Sauvin, G., Lecomte, I., Bazin, S., L’Heureux, J. S., Vanneste, M., Solberg, I. L., & Dalsegg, E. (2013). Towards geophysical and geotechnical integration for quick‐clay mapping in Norway. Near Surface Geophysics, 11(6), 613-624. Doi: https://doi.org/10.3997/1873-0604.2012064
  • Schlögl M, Widhalm B, Avian M (2021) Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 ISPRS. J Photogramm Remote Sens 172:132–146. Doi: https://doi.org/10.1016/j.isprsjprs.2020.12.001
  • Schlögl, M., Gutjahr, K., & Fuchs, S. (2022). The challenge to use multi-temporal InSAR for landslide early warning. Natural Hazards, 1-7. Doi: https://doi.org/10.1007/s11069-022-05289-9
  • Solberg, I. L., Long, M., Baranwal, V. C., Gylland, A. S., & Rønning, J. S. (2016). Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway. Engineering Geology, 208, 214-230. Doi: https://doi.org/10.1016/j.enggeo.2016.04.031
  • Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., ... & Rostan, F. (2012). GMES Sentinel-1 mission. Remote sensing of environment, 120, 9-24. Doi: https://doi.org/10.1016/j.rse.2011.05.028
  • Varnes, D. J., (1958). “Landslide Types and Processes”, Landslides and Engineering Practice by the Committee on Landslide Investigations, (Ed: Edwin B. Eckel), Highway Research Board Special Report 29, Washington D.C.
  • Zhu, K., Xu, P., Cao, C., Zheng, L., Liu, Y., & Dong, X. (2021). Preliminary identification of geological hazards from songpinggou to feihong in mao county along the minjiang river using SBAS-InSAR technique integrated multiple spatial analysis methods. Sustainability, 13(3), 1017. Doi: https://doi.org/10.3390/su13031017
  • URL-1 https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/satellite-description (Erişim Tarihi: 2022).
  • URL-2 https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/mission-objectives (Erişim Tarihi: 2022).
  • URL-3 https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/instrument-payload (Erişim Tarihi: 2022).
  • URL-4 https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/data-products (Erişim Tarihi: 2022).