Remote sensing and GIS applications for suitable afforestation area selection in Turkey
Bu çalışmanın amacı, uzaktan algılama verileri yardımıyla coğrafi bilgi sistemlerini kullanarak potansiyelağaçlandırma alanlarını tespit etmektir. Çalışmada, topografik, bitki ve arazi kullanım durumları farklı olan Arıt veEşme -Güre orman işletme şefliği sınırları seçilmiştir. Her iki alana ait Landsat TM uydu görüntü verilerine kontrollüsınıflandırma metodu maksimum benzerlik algoritması uygulanmıştır. Öncelikle potansiyel olan ağaçlandırmaalanlarına ilişkin kriterler belirlenerek uzaktan algılama yazılı ile kontrollü sınıflandırma metodu için bu alanlardankontrol alanları seçilmiştir. Kontrollü sınıflandırmaya ilişkin her iki alan için doğruluk değerlendirmeleri yapılmıştır.2032 ha toplam alanı bulunan Arıt Orman İşletme Şefliğine ilişkin genel doğruluk %81, 38447 ha EşmeGüreOrman İşletme Şefliğine ilişkin genel doğruluk % 89 oranında gerçekleşmiştir. Bu çalışma uzaktan algılamasınıflandırma yöntemleriyle potansiyel ağaçlandırma alanlarının tespit edilebilirliğini ispatlamıştır.
Türkiye'de uygun ağaçlandırma alanlarının belirlenmesinde uzaktan algılama ve CBS uygulamaları
The aim of the study, the potential afforestation areas locate using remote sensing data and geographicinformation system. In this study, Arit and Esme -Gure forest district areas that have different site conditions,vegetation and topographic conditions was chosen. Landsat TM image was used do pixel based supervisedclassification and maximum likelihood classification strategy were applied. At first, the criteria that will be potentialafforestation area were determined, then the training areas selected on the remote sensing images using on maps tothe best classification of potential afforestation areas. Accuracy assessment was evaluated of supervised classificationand the result images genera ted vector. The study revealed that 2032 ha is total potential afforestation forest area forArit Forest district (overall accuracy; 81%) and 38447 ha is total potential afforestation forest area for Esme- GureForest district (overall accuracy; 89%). The study has demonstrated a method that can be used due to the fact thathigher accuracy.
___
- Atalay, I., 2002. Ecoregions of Turkey. T.C. Ministry of Forestry Publications, No:163, Meta Press, Izmir .
- Atalay, I., 2008. Ecosystem Ecology and Geography . Meta Press, Izmir.
- Atesoglu, A., Tunay, M., 2010. Spatial and temporal analysis o f forest cover changes in the Bartin region of North - western Turkey, African Journal of Biotechnology 9 (35): 5676 -5685.
- Chaudhary, B.S., Beniwal A., Arya V.S., 2003. Remote sensing applications in mapping of forest cover and potential afforestation sites for sustainable forest management. A case study of rewari district, haryana, india. XII. World Forestry Congress.
- Diker, M., Inal, S., 1945. Afforestation that the case of the Turkey forestry. Ankara Faculty of Agriculture Journal 5(1): 47 -54 .
- Dilek, E. F., Şahin S., Yilmazer İ., 2008. Afforestation areas defined by GIS in Gölbaşı especially protected area Ankara/Turkey. Environ mental Monitoring and Assessment 144: 251 259, doi: 10.1007/s10661 -007 -9985 -7
- EEC, 1995. CORINE land cover. European Environmen t Agency, Commission of the European Communities.
- Elhag, M., 2010. Land suitability for afforestation and nature conservation practices using remote sensing & GIS techniques . Catrina Journal 6 (1): 11 -17 .
- Emberger, L., 1952. Sur le quotient pluviothermiq ue. C.R. Academic Science 234: 2508 -2510. FAO, 2010. Global forest resources assessment 2010, main report, Roma. http://www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 21.Oct.2012).
- FRA, 2001. Global forest fire assessment 1990 -2000, Forestry Department Food and Agriculture Organization of the United Nations, Roma h ttp://www.fao.org/docrep/006/ad653e/ad653e00.htm.
- Gaussen, H., 1954. Theories et classification des climate et microclimates. VIII Congress. Intern. Bot., Paris -France. Proocedings. Pp . 125 -130.
- Hossain S., Lin C.K., Hussain M.Z., 2008. Remote Sensing and GIS applications for suitable mangrove afforestation area selection in the coastal zone of Bangladesh. Geocarto International 18 (1 ): 61 -65, doi: 10.1080/10106040308542264 .
- Ivanov E., Manakos I., Rey Benayas J.M., 2007. Remote sensing evaluation of afforestation versus naturalrevegetation on abandoned croplands in central Spain. GeoInformation in Europe, M.A. Gomarsca (ed.), Millpress, Netherlands.
- Jones, B., Ritters, K., Wıckham, J., Tankersley R., ONe ill, R., Chalou d, D., Smith, E. Neale, A., 1997. An ecological assessment of the United States Mid - Atlantic Region: A Landscape Atlas, U.S. environmental protection agency, No. EPA/600/R-97/130, U.S. Printing Office, Washington, DC.
- Kanowski, P. J., 1997. Afforestation and plantation forestry, Resource Management in Asia -Pacific, Working Paper No. 6, Special Paper for XI World Forestry Congress, Antalya -Turkey. Proocedings 13 p.
- Kantarcı, M.D., 2005. The Knowledge of Forest Ecosystems. Istanbul University Faculty of Forestry Publications, 4594 (488) Istanbul University Press, Istanbul.
- Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2004. Remote Sensing and Image Interpretation. John Wiley & Sons Inc., New York.
- Saatçioğlu , F., 1956. Importance of afforestation and economic necessity in terms of Turkey. Journal of the Faculty of Forestry Istanbul University 6 B(2): 11 -18.
- Ürgenç, S. I., 1998. Afforestation Techniques. Istanbul University Faculty of Forestry Publications, 3994 (441) Istanb ul University Press, Istanbul.