Landslide susceptibility mapping using logistic statistical regression in Babaheydar Watershed, Chaharmahal Va Bakhtiari Province, Iran
Toprak kaymaları, dağlık bölgelerdeki en zarar verici doğal felaketler arasında yer almaktadır . Her yıl,dünyanın dört bir yanında yüzlerce insan toprak kayması neticesinde ölüyor. Ayrıca, bu olayların yerel ve globalekonomi üzerinde de büyük etkileri bulunmaktadır. Bu çalışmada, toprak kayması tehlikesine sahip bölgeleri tespitetmek üzere lojistik regresyon kullanılarak Baba Haydar Havzasında toprak kayması tehlikesi haritası çıkartılmıştır.İlk olarak, havadan çekilmiş fotoğraf yorumları ve saha incelemeleri kullanılarak toprak kayması envanter haritasıhazırlanmıştır. Bir sonraki adımda rakım, eğim yüzdesi, eğim açısı, litoloji, fay hatlarına olan mesafe, nehirler,yerleşim yerleri ve yollar, arazi kullanımı ve yağış miktarı olmak üzere toprak kaymasına neden olabilecek on adetfaktör, çalışma bölgesinde toprak kaymasında etkin faktörler olarak seçilmiştir. Ardından, Coğrafi Bilgi Sisteminde(GIS) lojistik regresyon modeli kullanılarak toprak kayması hassasiyeti haritası oluşturulmuştur. Modeldeğerlendirmesi için ROC ve Pseudo -R2 endeksleri kullanılmıştır. Sonuçlar, lojistik regresyon modelinin , 0.876lıkROC değeri ile birlikte Baba Haydar Havzasında toprak kayması hassasiyet haritasının yüksek bir tahmin doğruluğusağladığını göstermiştir. Ayrıca sonuçlar, havza bölgelerinin yaklaşık %44ünün yüksek ve son derece tehlikelisınıflarda yer aldığını ortaya çıkartmıştır. Sonuç olarak elde edilen toprak kayması hassasiyeti haritaları, uygun havzayönetimi uygulamalarında ve bölgenin sürdürülebilir bir şekilde geliştirilmesinde faydalı olabilir .
İran ın Çaharmahal ve Bahtiyari Bölgesi ndeyer alan Baba Haydar Havzası nda lojistik regresyon kullanılarak heyelan hassasiyeti haritasının çıkartılması
Landslides are amongst the most damaging natural hazards in mountainous regions. Every year, hundredsof people all over the world lose their lives in landslides; furthermore, there are large impacts on the local and globaleconomy from these events. In this stu dy, landslide hazard zonation in Babaheydar watershed using logisticregression was conducted to determine landslide hazard areas. At first, the landslide inventory map was preparedusing aerial photograph interpretations and field surveys. The next step, ten landslide conditioning factors such asaltitude, slope percentage, slope aspect, lithology, distance from faults, rivers, settlement and roads, land use, andprecipitation were chosen as effective factors on landsliding in the study area. Subsequently, landslide susceptibilitymap was constructed using the logistic regression model in Geographic Information System (GIS). The ROC andPseudo -R2 indexes were used for model assessment. Results showed that the logistic regression model providedslightly high prediction accuracy of landslide susceptibility maps in the Babaheydar Watershed with ROC equal to0.876. Furthermore, the results revealed that about 44% of the watershed areas were located in high and very highhazard classes. The resultant landslide su sceptibility maps can be useful in appropriate watershed managementpractices and for sustainable development in the region .
___
- Akgun, A., Turk, N., 2010 . Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multi- criteria decision analysis. Environ mental Earth Science 61: 595 611.
- Akgun, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case stu dy at İzmir, Turkey. Landslides 9: 93 106
- Ayalew, L., Yamagishi, H., 2005. The application of GIS -based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65: 15 31.
- Brenning, A., 2005 : S patial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards Earth Systems Science 5 (6): 853 862, doi:10.5194/nhess -5 -853 -2005.
- Bijukchhen , S .M. , Kayastha, P. , Dhital. M.R., 2013. A comparative evaluation of heuristic and bivariate statistical modeling for landslide susceptibility mappings in Ghurmi-Dhad Khola, east Nepal. Arabian Journal of Geosciences 6(8): 2727 -2743.
- Caniani, D. Pascale, S. Sdao, F., Sole, A., 2008. Neural networks and landslide susceptibility: a c ase study of the urban area of Potenza . Natural Hazards 45: 55 72.
- Clark, W.A.V., Hosking, P.L. , 1986. Statistical methods for geographers. Mathematics, 518p.
- Duman, T.Y., Can, T., Gokceoglu, C., Nefeslioglu, H.A. , Sonmez, H., 2006 . Application of logis tic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environmental Geology 51:241 256.
- Eker, R., Aydın, A., 2014. Assessment of forest road conditions in terms of landslide susceptibility: a case study in Yığılca Forest Directorate (Turkey). Turkish Journal of Agric ultural Forestry 38 (2): 281 -290.
- Ermini, L., Catani, F., Casagli, N., 2005. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327 343.
- Guzzetti, F., Carrara, A., Cardinalli, M., Reichenbach, P. , 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31 : 181 216.
- Guzzetti, F., 2002. Landslide hazard assessment and risk evaluation: overview, limits and prospective. Proceedings 3rd MITCH Workshop Floods, Droughts and Landslides Who Plans, Who Pays, page 24 26.
- Felic isimo, A., Cuartero, A. , Remondo, J., Quiros, E., 2013. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2): 175 -189, doi:10.1007/s10346 -012 -0320 -1
- Hasekiogullari, G.D., Ercanoglu, M. A., 2012. N ew approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Natural Hazards 63(2): 1157 -1179, doi:10.1007/s11069 -012 -0218 -1
- Karimi Sangchini, E., Ownegh, M., Sadoddin, A., Mashayekhan, A., 2011. Probabilistic landslide risk analysis and mapping (Case Study: Chehel-Chai watershed, Golestan Province, Iran). Journal of Rangeland Science 2(1): 425 - 436. Kayastha P., Dhital MR, De Smedt, F. , 2013. Evaluation and comparison of GIS based landslide susceptibility mapping procedures in Kulekhani watershed, Nepal. Journal of the Geological Society of India 81:219 -231
- Lee, S., Pradhan, B., 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4: 33 41 .
- Lee, S.T., Yu, T.T., Peng, W.F., Wang, C.L., 2010. incorporating the effects of topographic amplification in the analysis of earthquake-induced landslide hazards using logistic regression. Natural Hazards and Earth System Sciences 10: 2475 -2488 , doi:10.5194/nhess -10 -2475 -2010.
- Lee, E.M., Jones, D.K.C. , 2004. Landslide risk assessment. Thomas Telford, London, p 454. Melchiorre, C., Matteucci, M., Azzoni, A. , Zanchi, A., 2008. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94: 379 400.
- Nandi, A. , Shakoor, A.A ., 2009. GIS -based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineer ing Geology 110: 11 20.
- Oh, H.J., Lee, S., 2010. Cross -validation of logistic regression model for landslide susceptibility mapping at Geneoung areas, Korea . Disaster Advances 3(2): 44 55.
- Pontius, R.J., Schneider, L.C., 2001. Land -cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment 85: 239 248.
- Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., 2012a. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards 63: 965 996. doi:10.1007/s11069 -012 -0217 -2.
- Pourghasemi, H.R. , Pradhan, B., Gokceoglu, C., Mohammadi, M., Moradi, H.R., 2013 a. Application of weights-of- evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab ian Journal of Geoscience 6(7): 2351 -2365 , d oi: 10.1007/s12517 -012 -0532 -7.
- Pourghasemi, H.R., Moradi, H.R., Fatemi Aghda, S.M., 2013b. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and a ssessment of their performances. Natural Hazards 69(1): 749 -779, doi: 10.1007/s11069 -013 -0728 -5.
- Pourghasemi, H.R., Moradi, H.R., Fatemi Aghda, S.M., Gokceog lu, C., Pradhan, B. , 2014. GIS -based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian Journal of Geoscience 7(5): 1857 -1878, doi: 10.1007/s12517 -012 -0825 -x
- Pouydal C.P., Chang, C., Oh, H.J., Lee, S. , 2010. Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ mental Earth Science 61: 1049 1064 .
- Pradhan, B., 2010a. Remote sensing an d GIS -based landslide hazard analysis and cross -validation using multivariate logistic regression model on three test areas in Malaysia. Advances Space Res earch 45: 1244 1256 .
- Pradhan, B., 2011 a. Use of GIS -based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ mental Earth Science 63(2): 329 -349, doi:10.1007/s12665 - 010 -0705 -1
- Pradhan, B. , 2011b. Manifestation of an advanced fuzzy logic model coupled with geoinformation techn iques for landslide susceptibility analysis. Environmental and Ecological Statistics 1 8(3):471 493, doi:10.1007/s10651 -010 - 0147 -7
- Pradhan, B., 2011 c. Use of GIS -based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ mental Earth Science 63(2):329 349.
- Pradhan, B., 201 3 . A comparative study on the predictive ability of the decision tree, support vector machine and neuro -fuzzy models in landslide susceptibility mapping using GIS . Computer and Geoscience 51: 350 -365, doi:10.1016/j.cageo.2012.08.023
- Pradhan, B. Buchroithner, M.F., 2010. Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environmenta l Engineering Geoscience 16(2): 107 126, doi:10.2113/gseegeosci.16.2.107
- Pradhan, B. , Lee, S., 2007. Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis by using an artificial neural network model. Earth Science Frontiers 14(6):143 152. Pradhan, B., Lee, S., 2009. Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Phys ical Science 3(11):1 15.
- Pradhan, B., Lee, S., 2010a. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ mental Earth Science 60: 1 037 1054 .
- Pradhan, B., Lee, S., 2010b. Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ mental Modelling and Software 25(6):747 759.
- Pradhan, B. , Youssef, A.M., 2010. Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab ian J ournal of Geoscience 3(3): 319 326.
- Pradhan, B., Lee, S., Buchroithner, M.F., 2009. Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: a case study in Malaysia. Applied Geomatics 1: 3 15 .
- Pradhan, B., Lee, S., Buchroithner, M.F. , 2010a. A GIS -based back-propagation neural network model and its cross - application and validation for landslide susceptibility an alyses. Computers Environment and Urban Systems 34(3): 216 235. Pradhan, B., Sezer, E.A., Gokceoglu, C., Buchroithner, M.F., 2010b. Landslide susceptibility mapping by neuro fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE Trans actions on Geoscience and Remote Sens ing 48(12): 4164 4177 .
- Pradhan, B., Youssef, A.M. , Varathrajoo, R., 2010c. Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geo -Spatial In formation Science 13(2): 93 102. doi:10.1007/s11806 -010 -0236 -7 .
- Pradhan, B., Mansor, S., Pirasteh, S., Buchroithner, M., 2011. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. International Journal ofRemote Sens ing 32(14): 4075 4087, doi:10.1080/01431161.2010.484433
- Sakar, S., Kanungo, D.P., 1995. Mehrotar, G.S. Landslide zonation: A ca se study Garhwal Hymalia, India. Mou ntain Research and Development 15(4): 301 -30.
- Suzen, M.L., Doyuran, V.A ., 2004. comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ mental Geology 45: 665679.
- Tangestani, M.H., 2009. A comparative study of Demster-Shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW Iran. Journal ofAsian Earth Science 35: 6673 .
- Yalcin, A., Reis, S. , Aydinoglu, A.C., Yomralioglu, T., 2011. A GIS -based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85 : 274287.
- Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale stu dy, Hendek region (Turkey). Engineering Geology 79 : 251 266.
- Yilmaz, I., 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability logistic regression, artificial neural networks, and support vector machine. Environ mental Earth Science 61: 821 836 .
- Yilmaz, C., Topal, T., Suzen, M.L., 2012. GIS -based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ mental Earth Science 65: 2161 2178 .