DÖRTGENSEL BİR YÜZEYİN TİTREŞİMİ VE ÜRETİLEN SESİN SİMÜLASYONU

Günümüzde, havacılık, otomotiv, inşaat gibi bir çok endüstri ince plaka türü malzemeleri kullanmaktadır. Bu malzemelerin titreşimleri halinde oluşturacakları ses radyasyonu istenmeyen gürültülere de sebep olmaktadır. Bu çalışmada düzlemsel ince bir plakanın titreşim hareketi ve bu titreşim ile üreteceği sesin matematiksel denklemleri düzlemsel dalga denklem çözümleri ve Kirchoff İnce Plaka teoremi ile birlikte türetilmiştir. İnce plaka titreşimi MATLAB kullanılarak görselleştirilmiştir. Elde edilen modelin geliştirilerek, titreşen ince bir levhadan yayılan sesi (gürültüyü) azaltmak gibi daha ileri analizler için kullanılabilmesi amaçlanmıştır.

SIMULATION OF A RECTANGULAR THIN PLATE VIBRATION AND PRODUCED SOUND

Nowadays, many industries such as aviation, automotive and building industries use thin plate type materials. The sound radiation that these materials create in the form of vibrations also causes unwanted noises. In this study, the vibrational motion of a planar thin plate and the mathematical equations of the sound it will produce with this vibration are derived. The solution of mathematical equations of sound propagated by thin plate vibration is visualized by using MATLAB It is aimed that the model obtained can be developed and used for further analysis such as reducing the sound (noise) emanating from a vibrating thin plate.

___

  • Cahill, B., (2009), University of Dublin, Trinity College, M.Sc. Thesis, 102p, Ireland
  • Chadwick, J. N., Zheng, C., & James, D. L. (2012). Precomputed acceleration noise for improved rigid-body sound. ACM Transactions on Graphics (TOG), 31(4), 1-9.
  • Elif, E. K. Ş. İ., AKI, F. N., & YAZICI, R. Fizik Tabanlı Ses Sentezi Uygulamaları Üzerine Bir İnceleme. Haliç Üniversitesi Fen Bilimleri Dergisi, 3(2), 289-305.
  • Florens, J. L., & Cadoz, C. (1991). The physical model: modeling and simulating the instrumental universe. In Representations of musical signals (pp. 227-268).
  • Kumar S., Vinayak Ranjan, Jana P. (2018), Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Composite Structures, Vol. 197, p. 39-53.
  • Myung Soo Choi (2003), Free vibration analysis of plate structures using finite element-transfer stiffness coefficient method. KSME International Journal, Vol. 17, Issue 6, 2003, p. 805-815.
  • O'Brien, J. F., Shen, C., & Gatchalian, C. M. (2002, July). Synthesizing sounds from rigid-body simulations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 175-181).
  • Raghuvanshi, N. and lin, M. (2006). Symphony: Real-time physically based sound synthesis. In Proceedings of Symposium on Interactive 3D Graphics and Games.
  • Ramu I., Mohanty S. C. (2012), Study on free vibration analysis of rectangular plate structures using finite element method. Procedia Engineering, Vol. 38, 2012, p. 2758-2766.
  • Tanaka M., Yamagiwa K., Miyazaki K., Ueda T. (1988), Free vibration analysis of elastic plate structures by boundary element method. Engineering Analysis, Vol. 5, Issue 4, 1988, p. 182-188.
  • Van Den Doel, K., Kry, P. G., & Pai, D. K. (2001, August). FoleyAutomatic: physically-based sound effects for interactive simulation and animation. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 537-544).
  • Zaman, I., Rozlan, S. A. M., Yusoff, A., Madlan, M. A., & Chan, S. W. (2017). Theoretical modelling of sound radiation from plate. In IOP Conference Series: Materials Science and Engineering (Vol. 165, No. 1, p. 012023). IOP Publishing.
  • Zhang, Q., Ye, L., & Pan, Z. (2005, September). Physically-based sound synthesis on GPUs. In International Conference on Entertainment Computing (pp. 328-333). Springer, Berlin, Heidelberg.
  • Zhou, D., & Ji, T. (2006). Free vibration of rectangular plates with continuously distributed spring-mass. International journal of solids and structures, 43(21), 6502-6520.
  • Zhou, D., & Ji, T. (2012). Free vibration of rectangular plates with attached discrete sprung masses. Shock and Vibration, 19(1), 101-112.