Development of inhalable cubosome nanoparticles of Nystatin for effective management of Invasive Pulmonary Aspergillosis

Background and Aims: Invasive pulmonary aspergillosis (IPA) is an imperative concern in the present era due to its high occurrence and mortality rate in severely immunocompromised patients. The present study was designed to develop, optimize and characterize encapsulated nystatin (NYS) cubosome nanoparticles as an inhalable system, a viable alternative for effective management of IPA. Methods: A dry lipidic film comprising glycerol monooleate (GMO), Span 83, Poloxamer (P-407) and dispersed NYS was subjected to ultrasound sonication to produce colloidal dispersion of cubosomes. The process and formulation variables were screened using Plackett Burman design and further optimized by Box Behnken design by evaluating its effect on particle size, polydispersity index (PDI), zeta potential and entrapment efficiency. Results: The optimized NYS cubosomes were nearly spherical with some irregular polyangular symmetry as visualized by transmission electron microscopy (TEM). Further, small angle X-ray scattering (SAXS) affirmed Pn3m cubic mesophasic structure. The optimized nanoparticles had particle size 263.5 nm, zeta potential -14.4 mV, PDI 0.283 and entrapment efficiency 82%. The in-vitro cytotoxicity assay indicated that NYS cubosomes reduced cell cytotoxicity in contrast to pure drug post 48h. In-vitro haemolytic assay denoted lower toxicity of formulation as compared to free drug. In-vitro drug release studies highlighted, slow but continuous release from NYS cubosomes until 48h and showcased Higuchi release kinetics. Likewise, NYS cubosome demonstrated higher antifungal activity compared to drug suspended in phosphate buffer. Conclusion: Thus, non-invasive feature and contemplated target specificity of nystatin loaded cubosome nanoparticles pave a mode for its prospect as pulmonary delivery to combat IPA.

___

  • • Adhikari, K. (2017). In vitro Toxicity Study of Reconstituted Amphotericin B - Lipid Derivatives Dry Powder for Nebulization. Dhaka University Journal of Pharmaceutical Sciences, 15, 127.
  • • Ali, M. A., Noguchi, S., Iwao, Y., Oka, T., & Itai, S. (2016). Preparation and Characterization of SN-38-Encapsulated Phytantriol Cubosomes Containing alpha-Monoglyceride Additives. Chemical & Pharmaceutical Bulletin, 64(6), 577–584.
  • • Bei, D., Marszalek, J., & Youan, B.-B. C. (2009). Formulation of dacarbazine- loaded cubosomes-part I: influence of formulation variables. AAPS PharmSciTech, 10(3), 1032–1039.
  • • Carneiro, S. P., Carvalho, K. V., de Oliveira Aguiar Soares, R. D., Carneiro, C. M., de Andrade, M. H. G., Duarte, R. S., & Dos Santos, O. D. H. (2019). Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids and Surfaces. B, Biointerfaces, 175, 306–313.
  • • Chishti, N., Jagwani, S., Dhamecha, D., Jalalpure, S., & Dehghan, M. H. (2019). Preparation, Optimization, and In Vivo Evaluation of Nanoparticle-Based Formulation for Pulmonary Delivery of Anticancer Drug. Medicina (Kaunas, Lithuania), 55(6).
  • • Chuealee, R., Aramwit, P., Noipha, K., & Srichana, T. (2011). Bioactivity and toxicity studies of amphotericin B incorporated in liquid crystals. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 43(4), 308–317.
  • • Das, P. J., Paul, P., Mukherjee, B., Mazumder, B., Mondal, L., Baishya, R., Debnath, M. C., & Dey, K. S. (2015). Pulmonary Delivery of Voriconazole Loaded Nanoparticles Providing a Prolonged Drug Level in Lungs: A Promise for Treating Fungal Infection. Molecular Pharmaceutics, 12(8), 2651–2664.
  • • Deshpande, S., & Singh, N. (2017). Influence of Cubosome Surface Architecture on Its Cellular Uptake Mechanism. Langmuir, 33(14), 3509–3516.
  • • Dong, Y., Chang, Y., Qian, W., Tong, J., & Zhou, J. (2016). Effects of surfactants on size and structure of amylose nanoparticles prepared by precipitation. Bulletin of Materials Science, 39.
  • • El-Ridy, M. S., Abdelbary, A., Essam, T., El-Salam, R. M. A., & Kassem, A. A. A. (2011). Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Development and Industrial Pharmacy, 37(12), 1491–1508.
  • • Esposito, E., Cortesi, R., Drechsler, M., Paccamiccio, L., Mariani, P., Contado, C., Stellin, E., Menegatti, E., Bonina, F., & Puglia, C. (2005). Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharmaceutical Research, 22(12), 2163–2173.
  • • Kim, E. S., Han, K. B., Lin, S., Kong, D., Bai, L., Deng, Z., ... & Lee, M. J. (2017). Polyene compound, method for preparing the same, and antifungal drug comprising novel polyene compound as active ingredient U.S. Patent No. 9,605,015. Washington, DC: U.S. Patent and Trademark Office.
  • • Fernandez Campos, F., Calpena Campmany, A. C., Rodriguez Delgado, G., Lopez Serrano, O., & Clares Naveros, B. (2012). Development and characterization of a novel nystatin-loaded nanoemulsion for the buccal treatment of candidosis: ultrastructural effects and release studies. Journal of Pharmaceutical Sciences, 101(10), 3739–3752.
  • • Furedi, P., Papay, Z. E., Kovacs, K., Kiss, B. D., Ludanyi, K., Antal, I., & Klebovich, I. (2017). Development and characterization of the voriconazole loaded lipid-based nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 132, 184–189.
  • • Gabr, M. M., Mortada, S. M., & Sallam, M. A. (2017). Hexagonal Liquid Crystalline Nanodispersions Proven Superiority for Enhanced Oral Delivery of Rosuvastatin: In Vitro Characterization and In Vivo Pharmacokinetic Study. Journal of Pharmaceutical Sciences, 106(10), 3103–3112.
  • • Hao, J., Fang, X., Zhou, Y., Wang, J., Guo, F., Li, F., & Peng, X. (2011). Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. International Journal of Nanomedicine, 6, 683–692.
  • • Hussein-Al-Ali, S. H., El Zowalaty, M. E., Kura, A. U., Geilich, B., Fakurazi, S., Webster, T. J., & Hussein, M. Z. (2014). Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. BioMed Research International, 2014, 651831.
  • • Islam, N., & Ferro, V. (2016). Recent advances in chitosan-based nanoparticulate pulmonary drug delivery. Nanoscale, 8(30), 14341–14358.
  • • Kassem, A., Mohsen, A., Samir Ahmed, R., & Mohamed Essam, T. (2016). Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. Journal of Molecular Liquids, 218, 219–232.
  • • Khan, M. A., Faisal, S. M., & Mohammad, O. (2006). Safety, efficacy and pharmacokinetics of tuftsin-loaded nystatin liposomes in murine model. Journal of Drug Targeting, 14(4), 233–241.
  • • Kim, H.-J., Son, J. S., & Kwon, T.-Y. (2018). Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles. Journal of Nanoscience and Nanotechnology, 18(2), 848–852.
  • • Kosmidis, C., & Muldoon, E. G. (2017). Challenges in the management of chronic pulmonary aspergillosis. Medical Mycology, 55(1), 63–68.
  • • Lestner, J. M., Howard, S. J., Goodwin, J., Gregson, L., Majithiya, J., Walsh, T. J., Jensen, G. M., & Hope, W. W. (2010). Pharmacokinetics and pharmacodynamics of amphotericin B deoxycholate, liposomal amphotericin B, and amphotericin B lipid complex in an in vitro model of invasive pulmonary aspergillosis. Antimicrobial Agents and Chemotherapy, 54(8), 3432–3441.
  • • Madheswaran, T., Kandasamy, M., Bose, R. J., & Karuppagounder, V. (2019). Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discovery Today, 24(7), 1405–1412.
  • • Mandal, S., Prathipati, P. K., Belshan, M., & Destache, C. J. (2019). A potential long-acting bictegravir loaded nano-drug delivery system for HIV-1 infection: A proof-of-concept study. Antiviral Research, 167, 83–88.
  • • Maqsood, I., Masood, M. I., Bashir, S., Nawaz, H. M. A., Anjum, A. A., Shahzadi, I., Ahmad, M., & Imran Masood, I. M. (2015). Preparation and in vitro evaluation of Nystatin micro emulsion based gel. Pakistan Journal of Pharmaceutical Sciences, 28(5), 1587–1593.
  • • Marin-Quintero, D., Fernandez-Campos, F., Calpena-Campmany, A. C., Montes-Lopez, M. J., Clares-Naveros, B., & Del Pozo-Carrascosa, A. (2013). Formulation design and optimization for the improvement of nystatin-loaded lipid intravenous emulsion. Journal of Pharmaceutical Sciences, 102(11), 4015–4023.
  • • Michel, G. W. (1977). Nystatin (K. Florey (ed.); Vol. 6, pp. 341–421). Academic Press. • Newman, S. P. (2017). Drug delivery to the lungs: challenges and opportunities. Therapeutic Delivery, 8(8), 647–661.
  • • Offner, F., Krcmery, V., Boogaerts, M., Doyen, C., Engelhard, D., Ribaud, P., Cordonnier, C., de Pauw, B., Durrant, S., Marie, J.-P., Moreau, P., Guiot, H., Samonis, G., Sylvester, R., & Herbrecht, R. (2004). Liposomal nystatin in patients with invasive aspergillosis refractory to or intolerant of amphotericin B. Antimicrobial Agents and Chemotherapy, 48(12), 4808–4812.
  • • Pawar, A. P., Gholap, A. P., Kuchekar, A. B., Bothiraja, C., & Mali, A. J. (2015). Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. Journal of Drug Delivery, 2015, 261068.
  • • Petrikkou, E., Rodriguez-Tudela, J. L., Cuenca-Estrella, M., Gomez, A., Molleja, A., & Mellado, E. (2001). Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. Journal of Clinical Microbiology, 39(4), 1345–1347.
  • • Pinto Reis, C., Vasques Roque, L., Baptista, M., & Rijo, P. (2016). Innovative formulation of nystatin particulate systems in toothpaste for candidiasis treatment. Pharmaceutical Development and Technology, 21(3), 282–287.
  • • Poddar, A., & Sawant, K. (2017). Optimization of Galantamine Loaded Bovine Serum Albumin Nanoparticles by Quality by Design and Its Preliminary Characterizations. J Nanomed Nanotechnol, 8(5), 1–10.
  • • Prajapati, V., Jain, A., Jain, R., Sahu, S., & Kohli, D. V. (2014). Treatment of cutaneous candidiasis through fluconazole encapsulated cubosomes. Drug Delivery and Translational Research, 4(5–6), 400–408.
  • • Rani, S., Gothwal, A., Pandey, P. K., Chauhan, D. S., Pachouri, P. K., Gupta, U. D., & Gupta, U. (2018). HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin. Pharmaceutical Research, 36(1), 19.
  • • Rizwan, S. B., Assmus, D., Boehnke, A., Hanley, T., Boyd, B. J., Rades, T., & Hook, S. (2011). Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 79(1), 15–22.
  • • Rizwan, S.??, & Boyd, B. (2015). Cubosomes: Structure, Preparation and Use as an Antigen Delivery System (pp. 125–140). • Ryder, N. S. (1999). Antifungal agents. IDrugs : The Investigational Drugs Journal, 2(12), 1253–1255.
  • • Sakeer, K., Al-Zein, H., Hassan, I., Desai, S., & Nokhodchi, A. (2010). Enhancement of dissolution of nystatin from buccoadhesive tablets containing various surfactants and a solid dispersion formulation. Archives of Pharmacal Research, 33(11), 1771–1779.
  • • Shi, X., Peng, T., Huang, Y., Mei, L., Gu, Y., Huang, J., Han, K., Li, G., Hu, C., Pan, X., & Wu, C. (2017). Comparative studies on glycerol monooleate- and phytantriol-based cubosomes containing oridonin in vitro and in vivo. Pharmaceutical Development and Technology, 22(3), 322–329.
  • • Silva, F. C., Marto, J. M., Salgado, A., Machado, P., Silva, A. N., & Almeida, A. J. (2017). Nystatin and lidocaine pastilles for the local treatment of oral mucositis. Pharmaceutical Development and Technology, 22(2), 266–274.
  • • Sugita, P., Ambarsari, L., & Lidiniyah. (2015). Optimization of Ketoprofen- loaded Chitosan Nanoparticle Ultrasonication Process. Procedia Chemistry, 16, 673–680.
  • • Szalewski, D. A., Hinrichs, V. S., Zinniel, D. K., & Barletta, R. G. (2018). The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery. Canadian Journal of Microbiology, 64(7), 439–453.
  • • von Halling Laier, C., Gibson, B., van de Weert, M., Boyd, B. J., Rades, T., Boisen, A., Hook, S., & Nielsen, L. H. (2018). Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. International Journal of Pharmaceutics, 550(1–2), 35–44.
  • • Yang, Z., Tan, Y., Chen, M., Dian, L., Shan, Z., Peng, X., & Wu, C. (2012). Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech, 13(4), 1483–1491.