Study of the beneficial effect of vanadium sulfate on the liver of experimental diabetic rats

Background and Aims: Liver is a tissue that is negatively affected by diabetes mellitus (DM). This is due to its central function in the regulation of carbohydrate metabolism. Vanadium salts, which have insulinomimetic effects, have been found to stimulate glycogenesis and glycolysis, as well as to inhibit glycogenolysis and lipolysis. The aim of this study is to evaluate the effect of vanadium sulfate (VS) on biochemical changes in liver tissue of diabetic rats. Methods: Randomly selected 6.0 - 6.5 months Swiss Albino rats were separated into two diabetic and two control groups. Group I: non treated animals. Group II: non treated animals orally administered VS (100mg/kg/day for 60 days), group III: STZinduced diabetic animals (65 mg/kg with intraperitoneally) and group IV: STZ-induced diabetic animals administered VS (at same dose and time). Antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, as well as alkaline phosphatase, glucose-6-phosphate dehydrogenase, carbonic anhydrase, myeloperoxidase, paraoxonase and lactate dehydrogenase were estimated in liver tissue homogenates of the groups. Results: Liver catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, lactate dehydrogenase, carbonic anhydrase and paraoxonase activities were decrease, but alkaline phosphatase, glucose- 6-phosphate dehydrogenase and myeloperoxidase activities were increase in diabetic rats when compared to normal rats. Conclusion: Results show that VS restored altered parameters in the liver tissue and prevented oxidative stress in diabetic rats.

___

  • • Aebi, H. (1984). Catalase in vitro. In: Methods of enzymatic analysis, 2nd Edition, Vol.2, Bergmeyer H.U. (Ed.), pp. 121–126.
  • • Ainscow, E. K., Zhao, C., & Rutter, G. A. (2000). Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes, 49, 1149–1155. https://doi.org/10.2337/diabetes.49.7.1149
  • • Betke, K., Beutler, E., Brewer, G. J., Kirkman, H. N., Luzzatto, L., Motulsky, A. G., Ramot, B., Siniscalco, M. (1967). Standardization of procedures for the study of glucose-6-phosphate dehydrogenase. Report of a WHO Scientific Group. World Health Organization Technical Report Series, 366, 1–53.
  • • Beutler, E. (1971). Red cell metabolism. A manual of biochemical methods, vol. 12. London: Academic Press.
  • • Chakraborty, T., Chatterjee, A., Rana, A., Dhachinamoorthi, D., Kumar P, A., & Chatterjee, M. (2007). Carcinogen-induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: chemopreventive role of vanadium on this process. Biochimica et Biophysica Acta, 1772, 48–59. https://doi.org/10.1016/j.bbadis.2006.10.019
  • • Furlong, C. E., Richter, R. J., Seidel, S. L., & Motulsky, A. G. (1988). Role of genetic polymorphism of human plasma paraoxonase/ arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. American Journal of Human Genetics, 43, 230–238.
  • • Gao, L. H., Liu, W. P., Wang, B. L., Li, L., Xie, M. J., Li, Y. R., Chen, Z. H., & Chen, X. Z. (2006). Effects of bis(alpha-furancarboxylato) oxovanadium(IV) on non-diabetic and streptozotocin-diabetic rats. Clinica Chimica Acta; International Journal of Clinical Chemistry, 368, 173–178. https://doi.org/10.1016/j.cca.2005.12.028
  • • Gupte, R. S., Floyd, B. C., Kozicky, M., George, S., Ungvari, Z. I., Neito, V., Wolin, M. S., & Gupte, S. A. (2009). Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radical Biology & Medicine, 47, 219–228. https://doi. org/10.1016/j.freeradbiomed.2009.01.028
  • • Gupte, S. A., Kaminski, P. M., Floyd, B., Agarwal, R., Ali, N., Ahmad, M., Edwards, J., & Wolin, M. S. (2005). Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. American Journal of Physiology. Heart and Circulatory Physiology, 288, H13–H21. https://doi.org/10.1152/ajpheart.00629.2004
  • • Habig, W. H., & Jakoby, W. B. (1981). Assays for differentiation of glutathione S-transferases. Methods in Enzymology, 77, 398–405. https://doi.org/10.1016/s0076-6879(81)77053-8
  • • Hussain, A., Claussen, B., Ramachandran, A., & Williams, R. (2007). Prevention of type 2 diabetes: a review. Diabetes Research and Clinical Practice, 76, 317–326. https://doi.org/10.1016/j.diabres. 2006.09.020
  • • Ismail I. S. (2018). The role of carbonic anhydrase in hepatic glucose production. Current Diabetes Reviews, 14, 108–112. https:// doi.org/10.2174/1573399812666161214122351
  • • Junod, A., Lambert, A. E., Stauffacher, W., & Renold, A. E. (1969). Diabetogenic action of streptozotocin: relationship of dose to metabolic response. The Journal of Clinical Investigation, 48, 2129– 2139. https://doi.org/10.1172/JCI106180
  • • Kanikarla-Marie, P., & Jain, S. K. (2015). Role of hyperketonemia in inducing oxidative stress and cellular damage in cultured hepatocytes and type 1 diabetic rat liver. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 37, 2160–2170. https://doi. org/10.1159/000438573
  • • Kawabe, K., Yoshikawa, Y., Adachi, Y., & Sakurai, H. (2006). Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life Sciences, 78, 2860–2866. https://doi. org/10.1016/j.lfs.2005.11.008
  • • Khersonsky, O., & Tawfik, D. S. (2006). The histidine 115-histidine 134 dyad mediates the lactonase activity of mammalian serum paraoxonases. The Journal of Biological Chemistry, 281, 7649–7656. https://doi.org/10.1074/jbc.M512594200
  • • Koren-Gluzer, M., Aviram, M., & Hayek, T. (2013). Paraoxonase1 (PON1) reduces insulin resistance in mice fed a high-fat diet, and promotes GLUT4 overexpression in myocytes, via the IRS-1/Akt pathway. Atherosclerosis, 229, 71–78. https://doi.org/10.1016/j. atherosclerosis.2013.03.028
  • • Koyuturk, M., Tunali, S., Bolkent, S., & Yanardag, R. (2005). Effects of vanadyl sulfate on liver of streptozotocin-induced diabetic rats. Biological Trace Element Research, 104, 233–247. https://doi. org/10.1385/BTER:104:3:233
  • • Liang, T., Zhang, Q., Sun, W., Xin, Y., Zhang, Z., Tan, Y., Zhou, S., Zhang, C., Cai, L., Lu, X., & Cheng, M. (2015). Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein. Toxicology Letters, 233, 114–124. https://doi. org/10.1016/j.toxlet.2015.01.010
  • • Lipinski, B. (2001). Pathophysiology of oxidative stress in diabetes mellitus. Journal of Diabetes and its Complications, 15, 203–210. https://doi.org/10.1016/s1056-8727(01)00143-x
  • • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.
  • • Luft, D., Schmülling, R. M., & Eggstein, M. (1978). Lactic acidosis in biguanide-treated diabetics: a review of 330 cases. Diabetologia, 14, 75–87. https://doi.org/10.1007/BF01263444
  • • Maritim, A. C., Sanders, R. A., & Watkins, J. B., 3rd (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology, 17, 24–38. https://doi.org/10.1002/ jbt.10058
  • • Matsui, R., Xu, S., Maitland, K. A., Hayes, A., Leopold, J. A., Handy, D. E., Loscalzo, J., & Cohen, R. A. (2005). Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II. Circulation, 112, 257–263. https://doi.org/10.1161/ CIRCULATIONAHA.104.499095
  • • Meneses, M. J., Silvestre, R., Sousa-Lima, I., & Macedo, M. P. (2019). Paraoxonase-1 as a regulator of glucose and lipid homeostasis: Impact on the onset and progression of metabolic disorders. International Journal of Molecular Sciences, 20, 4049. https://doi. org/10.3390/ijms20164049
  • • Molehin, O. R., & Oloyede, O. I. (2018). Attenuation of oxidative stress and hepatic damage by white butterfly (Clerodendrum volubile) leaves in streptozotocin-induced diabetes in rats. Journal of Basic and Clinical Physiology and Pharmacology, 30, 81–89. https://doi.org/10.1515/jbcpp-2018-0083
  • • Mylorie, A. A., Collins, H., Umbles, C., Kyle, J. (1986). Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicology and Applied Pharmacology, 82, 512-520
  • • Nishita, T., Igarashi, S., & Asari, M. (1995). Determination of carbonic anhydrase-III by enzyme-immunoassay in liver, muscle and serum of male rats with streptozotocin-induced diabetes mellitus. The International Journal of Biochemistry & Cell Biology, 27, 359–364. https://doi.org/10.1016/1357-2725(94)00090-x
  • • Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70, 158–169.
  • • Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2, 270–278. https://doi.org/10.4161/oxim.2.5.9498
  • • Pari, L., & Saravanan, R. (2007). Beneficial effect of succinic acid monoethyl ester on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-nicotinamide induced type 2 diabetes. Chemico-Biological Interactions, 169, 15–24. https://doi. org/10.1016/j.cbi.2007.04.010
  • • Rains, J. L., & Jain, S. K. (2011). Oxidative stress, insulin signaling, and diabetes. Free Radical Biology & Medicine, 50, 567–575. https:// doi.org/10.1016/j.freeradbiomed.2010.12.006
  • • Relander, A., & Räihä C. E. (1963) Differences between the enzymatic and o-toluidine methods of blood glucose determination. Scandinavian Journal of Clinical and Laboratory 15, 221-224
  • • Rodríguez, V., Plavnik, L., & Tolosa de Talamoni, N. (2018). Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 105, 95–102. https://doi.org/10.1016/j.biopha.2018.05.120
  • • Sekar, D. S., Sivagnanam, K., & Subramanian, S. (2005). Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats. Die Pharmazie, 60, 383–387.
  • • Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. The Journal of Biological Chemistry, 242, 4221–4229. • Wagenaar, L. J., Kuck, E. M., & Hoekstra, J. B. (1999). Troglitazone. Is it all over?. The Netherlands Journal of Medicine, 55, 4–12. https:// doi.org/10.1016/s0300-2977(99)00021-2 • Walter, W., & Schult, C. (1974). In: Methods of Enzymatic Analysis, Vol.2, Bergmeyer H.U., pp. 856-886.
  • • Wei, H., & Frenkel, K. (1991). In vivo formation of oxidized DNA bases in tumor promoter-treated mouse skin. Cancer Research, 51, 4443–4449.
  • • Wiersma, J. J., Meuwese, M. C., van Miert, J. N., Kastelein, A., Tijssen, J. G., Piek, J. J., & Trip, M. D. (2008). Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 14, CR406–CR410.
  • • Wroblewski F. (1957). Clinical significance of serum enzyme alterations associated with myocardial infarction. American Heart Journal, 54, 219–224. https://doi.org/10.1016/0002-8703(57)90149-7
  • • Yanardag, R., Demirci, T. B., Ulküseven, B., Bolkent, S., Tunali, S., & Bolkent, S. (2009). Synthesis, characterization and antidiabetic properties of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene- S-methyl-thiosemicarbazidato-oxovanadium (IV). European Journal of Medicinal Chemistry, 44, 818–826. https://doi. org/10.1016/j.ejmech.2008.04.023
  • • Zhang, Y., Yang, X. D., Wang, K., & Crans, D. C. (2006). The permeability and cytotoxicity of insulin-mimetic vanadium (III,IV,V)-dipicolinate complexes. Journal of Inorganic Biochemistry, 100, 80–87. https://doi.org/10.1016/j.jinorgbio.2005.10.006