Vitamin-anticancer drug conjugates: a new era for cancer therapy

Background: Following cardiovascular diseases, cancer is the world's second leading cause of death. Chemotherapy is the conventional gold technique for successful treatment of cancer. There are some drawbacks associated with traditional chemotherapy, namely, low aqueous solubility, limited biological half-life, production of multidrug resistance and non-specificity (lack of targeting ability) or dose-limiting cellular toxicity. To develop a targeted drug delivery for its anticancer effect is still a challenging task. Methods: We developed literature review methods which included inclusion and exclusion criteria for identifying potentially relevant articles, articles search strategies, abstract review protocols and a comprehensive scoring system for published studies. This study contains a detailed survey of various reported methods such as folic acid-drug conjugates, Cobalamin- Drug Conjugate, Vitamin B12-Conjugated and Paclitaxel-Loaded Micelles etc., all of which were studied for their methods of preparation and possible impact on biological activity. Results: Due to its specific ability to carry anticancer drugs directly to tumours, vitamin-mediated drug targeting has recently emerged as a novel concept. Solid tumour cancer has an unquenchable appetite for various essential vitamins, resulting in over-expression of the receptors involved in cell internalization of vitamins on the surface of cancer cells. So, the vitamin drug conjugates are specifically important for carrying the anticancer drugs directly to the tumour cells. Biotin, folic acid, vitamin B12 and riboflavin, the vitamin necessary for the division of all cells, especially cancer cells, have recently been examined as targeting agents. Conclusion: Vitamin-Drug Conjugate methods were found to be the most suitable methods amongst all the other reported methods and they can be applied for current therapy against cancer.

___

  • • Bareford, L. M., Avaritt, B. R., Ghandehari, H., Nan, A., & Swaan, P. W. (2013). Riboflavin-targeted polymer conjugates for breast tumor delivery. Pharmaceutical Research, 30(7), 1799–812. http://dx.doi. org/10.1007/s11095-013-1024.
  • • Bartouskova, M., Melichar, B., & Mohelnikova-Duchonova, B. (2015). Folate receptor: A potential target in ovarian cancer. Pteridines, 26(1), 1–2. https://doi.org/10.1515/pterid-2014-0013.
  • • Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3), 193. http://dx.doi.org/10.7150/ ijms.3635.
  • • Bildstein, L., Dubernet, C., & Couvreur, P. (2011). Prodrug-based intracellular delivery of anticancer agents. Advanced Drug Delivery Reviews, 63(1–2), 3–23.http://dx.doi.org/10.1016/j. addr.2010.12.005.
  • • Cavallaro, G., Maniscalco, L., Campisi, M., Schillaci, D., & Giammona, G. (2007). Synthesis, characterization and in vitro cytotoxicity studies of a macromolecular conjugate of paclitaxel bearing oxytocin as targeting moiety. European Journal of Pharmaceutics and Biopharmaceutics, 66(2), 182–192. http://dx.doi.org/10.1016/j. ejpb.2006.10.013.
  • • Chen, S., Zhao, X., Chen, J., Chen, J., Kuznetsova, L., Wong, S. S., & Ojima, I. (2010). Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjugate Chemistry, 21(5), 979–987. http://dx.doi.org/10.1021/bc9005656.
  • • Dai, Y., Cai, X., Bi, X., Liu, C., Yue, N., Zhu, Y. … Qian, H. (2019). Synthesis and anti-cancer evaluation of folic acid-peptide-paclitaxel conjugates for addressing drug resistance. European Journal of Medicinal Chemistry, 171,104–115. http://dx.doi.org/10.1016/j. ejmech.2019.03.031.
  • • Davis, C. (2019, September 18). Cancer [Web log post]. Retrieved from http://www.medicinenet.com/cancer/article.htm#.
  • • Elsadek, B., Graeser, R., Esser, N., Schäfer-Obodozie, C., Ajaj, K. A., Unger, C. … Kratz, F. (2010). Development of a novel prodrug of paclitaxel that is cleaved by prostate-specific antigen: An in vitro and in vivo evaluation study. European Journal of Cancer, 46(18), 3434–3444. http://dx.doi.org/10.1016/j.ejca.2010.08.018.
  • • Fernandez, M., Javaid, F., & Chudasama, V. (2018). Advances in targeting the folate receptor in the treatment/imaging of cancers. Chemical Science, 9(4), 790–810. https://doi.org/10.1039/C7SC04004K.
  • • Florea, A. M., & Busselberg, D., (2011). Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 3(1), 1351–1371. doi: 0.3390/cancers3011351
  • • Fortin, S., & Berube, G. (2013). Advances in the development of hybrid anticancer drugs. Expert Opinion on Drug Discovery, 8(8), 1029–1047. http://dx.doi.org/10.1517/17460441.2013.798296.
  • • Garraway, L. A., & Janne, P. A. (2012). Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discovery, 2, 214–226. http://dx.doi.org/10.1158/2159-8290.CD-12-0012.
  • • Gaspar, V. M., Costa, E. C., Queiroz, J. A., Pichon, C., & Sousa, F. (2015). Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharmaceutical Research, 32(2), 562–577. http://dx.doi.org/10.1007/s11095-014-1486-0.
  • • Gibiansky, L., & Gibiansky, E. (2014). Target-mediated drug disposition model and its approximations for antibody–drug conjugates. Journal of Pharmacokinetics and Pharmacodynamics, 41(1), 35–47. http://dx.doi.org/10.1007/s10928-013-9344-y.
  • • Gupta, Y., Jain, A., Jain, P., & Jain, S.K. (2007). Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. Journal of Drug Targeting, 15(3), 231–240. http://dx.doi.org/10.1080/10611860701289719.
  • • Guo, W., Deng, L., Chen, Z., Chen, Z., Yu, J., Liu, H. … Zhang, L. (2018). Vitamin B12-conjugated sericin micelles for targeting CD320-overexpressed gastric cancer and reversing drug resistance. Nanomedicine, 14(3), 353–370. https://doi.org/102217/ nnm-2018-0321.
  • • He, R., & Yin, C. (2017). Trimethyl chitosan based conjugate for oral and intravenous delivery of paclitaxel. Acta Biomaterial, 53, 355–366. http://dx.doi.org/10.1016/j.actbio.2017.02.012.
  • • Henne, W. A., Kularatne, S. A., Hakenjos, J., Carron, J. D., & Henne, K. L. (2013). Synthesis and activity of a folate targeted monodisperse PEG camptothecin conjugate. Bioorganic & Medicinal Chemistry Letters, 23(21), 5810–5813. http://dx.doi.org/10.1016/j. bmcl.2013.08.113.
  • • Ibsen, S., Zahavy, E., Wrasdilo, W., Berns, M., & Chan, M. (2010). A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharmaceutical Research, 27(9), 1848–1860. http://dx.doi.org/10.1007/s11095-010-0183-x.
  • • Iversen, T. G., Skotland, T., & Sandvig, K. (2011). Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano today, 6(2), 176–185. http://dx.doi. org/10.1016/j.nantod.2011.02.003.
  • • Iwata, R., Nakayama, F., Hirochi, S., Sato, K., Piao, W., Nishina, K. … Wada, T. (2015). Synthesis and properties of vitamin E analogconjugated neomycin for delivery of RNAi drugs to liver cells. Bioorganic & Medicinal Chemistry Letters, 25(4),815–819. http://dx.doi. org/10.1016/j.bmcl.2014.12.079.
  • • Jung, J. H., & Keller, T. (2012). United States (12) Patent Application Publication (10) Pub. No.: US. 310126:A1. • Leamon, C. P. (2008) Folate-targeted drug strategies for the treatment of cancer. Current Opinion in Investigational Drugs, 9(12), 1277−1286.
  • • Leamon, C. P., Vlahov I. R., Reddy, J. A., Vetzel, M., Santhapuram, H. K., You, F. … Westrick, E. (2014). Folate-vinca alkaloid conjugates for cancer therapy: A structure- activity relationship. Bioconjugate chemistry, 25(3), 560–568. http://dx.doi.org/10.1021/bc400441s.
  • • Leamon, C. P., Reddy, J. A., Vlahov, I. R., Westrick, E., Dawson, A., Dorton, R. … Wang, Y. (2007). Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Molecular Pharmaceutics, 4(5), 659–667. https://doi.org/10.1021/mp070049c.
  • • Mahato, R., Tai, W., & Cheng, K. (2011). Prodrugs for improving tumortargetability and efficiency. Advanced Drug Delivery Reviews, 63(8), 659–670. http://dx.doi.org/10.1016/j.addr.2011.02.002.
  • • Naumann, R.W., & Coleman, R. L. (2011). Management strategies for recurrent platinum-resistant ovarian cancer. Drugs, 71(11), 1397– 1412. http://dx.doi.org/10.2165/11591720-000000000-00000.
  • • Naumann, R. W., Coleman, R. L., Burger, R. A., Sausville, E. A., Kutarska, E., Ghamande, S. A. … Gersh, R.H. (2013). PRECEDENT: A randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer. Journal of Clinical Oncology, 31(35), 4400–4406. http://dx.doi. org/10.1200/JCO.2013.49.7685.
  • • Ojima, I., Zuniga, E., Berger, W., & Seitz, J. (2012). Tumor-targeting drug delivery of new-generation taxoids. Future Medicinal Chemistry, 4(1), 33–50. http://dx.doi.org/10.4155/fmc.11.167.
  • • Padma, V. V. (2015). An overview of targeted cancer therapy. Bio- Medicine, 5(4). http://dx.doi.org/10.7603/s40681-015-0019-4.
  • • Patil, S., Gawali, S., Patil, S., & Basu, S. (2014). Synthesis, characterization and in vitro evaluation of novel vitamin D3 nanoparticles as a versatile platform for drug delivery in cancer therapy. Journal of Material Chemistry B, 5742. https://doi.org/10.1039/C3TB21176B.
  • • Palvai, S., Nagraj, J., Mapara, N., Chowdhury, R., & Basu, S. (2014). Dual drug loaded vitamin D3 nanoparticle to target drug resistance in cancer. RSC Advances, 4(100), 57271–57281. http://dx.doi. org/10.1039/C4RA06475E.
  • • Parhi, P., Mohanty, C., & Sahoo, S. K. (2012). Nanotechnologybased combinational drug delivery: an emerging approach for cancer therapy. Drug Discovery Today, 17(17-18), 1044–1052. http://dx.doi.org/10.1016/j.drudis.2012.05.010.
  • • Pawar, S. K., Badhwar, A. J., Kharas, F., Khandare, J. J., &Vavia, P. R. (2012). Design, synthesis and evaluation of N-acetyl glucosamine (NAG)–PEG–doxorubicin targeted conjugates for anticancer delivery. International Journal of Pharmaceutics, 436(1-2),183–193. http://dx.doi.org/10.1016/j.ijpharm.2012.05.078.
  • • Pérez-Herrero, E., & Fernández-Medarde, A. (2015). Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 93, 52–79. http://dx.doi.org/10.1016/j.ejpb.2015.03.018.
  • • Persidis, A. (1999). Cancer multidrug resistance. Nature Biotechnology, 17(1), 94. http://dx.doi.org/10.1038/5289.
  • • Petros, R. A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug discovery, 9(8), 615. http://dx.doi.org/10.1038/nrd2591.
  • • Pettenuzzo, A., Pigot, R., & Ronconi, L. (2017). Vitamin B12–metal conjugates for targeted chemotherapy and diagnosis: Current status and future prospects. European Journal of Inorganic Chemistry, (12), 1625–1638. https://doi.org/10.1002/ejic.201601217.
  • • Pinhassi, R. I., Assaraf, Y. G., Farber, S., Stark, M., Ickowicz, D., Drori, S. … Livney, Y. D. (2009). Arabinogalactan− folic acid− drug conjugate for targeted delivery and target-activated release of anticancer drugs to folate receptor-overexpressing cells. Biomacromolecules, 11(1), 294–303. http://dx.doi.org/10.1021/bm900853z.
  • • Qu, C.Y., Zhou, M., Chen, Y. W., Chen, M. M., & Shen, F. (2015). Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. International Journal of Nanomedicine, 10, 3911. http://dx.doi.org/10.2147/IJN.S83211.
  • • Rajendran, L., Knolker, H. J., & Simons, K. (2010). Subcellular targeting strategies for drug design and delivery. Nature Reviews Drug Discovery, 9(1), 29. http://dx.doi.org/10.1038/nrd2897.
  • • Reddy, J. A., Dorton, R., Westrick, E., Dawson, A., Smith, T., Xu, L. C. … Leamon, C.P. (2007). Preclinical evaluation of EC145, a folatevinca alkaloid conjugates. Cancer Research, 67(9), 4434–4442. http://dx.doi.org/10.1158/0008-5472.CAN-07-0033.
  • • Reddy, J. A., Dorton, R., Dawson, A., Vetzel, M., Parker, N., Nicoson, J.S. … Leamon, C.P. (2009). In vivo structural activity and optimization studies of folate− tubulysin conjugates. Molecular Pharmaceutics, 6(5), 1518–1525. https://doi.org/10.1021/mp900086w.
  • • Rijnboutt, S., Jansen, G., Posthuma, G., Hynes, J. B., & Schornagel, J. H. (1996). Endocytosis of GPI-linked membrane folate receptoralpha. The Journal of Cell Biology, 132(1), 35–47. http://dx.doi. org/10.1083/jcb.132.1.35.
  • • Ruiz-Sánchez, P., König, C., Ferrari, S., & Alberto, R. (2011). Vitamin B 12 as a carrier for targeted platinum delivery: In vitro cytotoxicity and mechanistic studies. Journal of Biological Inorganic Chemistry, 16(1), 33–44. http://dx.doi.org/10.1007/s00775-010-0697-z.
  • • Russell-Jones, G., McTavish, K., & McEwan, J. (2011). Preliminary studies on the selective accumulation of vitamin-targeted polymers within tumors. Journal of Drug Targeting, 19(2), 133–139. http://dx.doi.org/10.3109/10611861003734027.
  • • Sausville, E., LoRusso, P., Quinn, M., Forman, K., Leamon, C., Morganstern, D. … Messmann, R. (2007). A phase I study of EC145 administered weeks 1 and 3 of a 4-week cycle in patients with refractory solid tumors. Journal of Clinical Oncology, 25(18_suppl), 2577. http://dx.doi.org/10.1200/JCO.2011.41.4946.
  • • Seifu, M. F., & Nath, L. K. (2019). Polymer-drug conjugates: novel carriers for cancer chemotherapy. Polymer-Plastics Technology and Materials, 58(2), 1158-1171. https://doi.org/10.1080/036255 9.2018.1466172.
  • • Seitz, J. D., Vineberg, J. G., Herlihy, E., Park, B., & Melief, E. (2015). Design, synthesis and biological evaluation of a highly potent and cancer cell selective folate-taxoid conjugate. Bioorganic & Medicinal Chemistry, 2187–2194. http://dx.doi.org/10.1016/j.bmc.2015.02.057.
  • • Siega, P., Wuerges, J., Arena, F., Gianolio, E., Fedosov, S.N., Dreos, R. … Randaccio, L. (2009). Release of toxic Gd3+ ions to tumour cells by vitamin B12 bioconjugates. Chemistry–A European Journal, 15(32),7980–7989. http://dx.doi.org/10.1002/chem.200802680.
  • • Sutherland, J. C., & Griffin, K. P. (1981). Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiation Research, 86(3), 399–410. http://dx.doi.org/10.2307/3575456.
  • • Tran, M. T., Stürup, S., Lambert, I. H., Gammelgaard, B., & Furger, E. (2016). Cellular uptake of metallatedcobalamins. Metallomics, 8(3), 298–304. http://dx.doi.org/10.1039/c5mt00272a.
  • • Tripodo, G., Mandracchia, D., Collina, S., Rui, M., & Rossi, D., (2014). New perspectives in cancer therapy: the biotin-antitumor molecule conjugates. Medicinal Chemistry, 8, 1–4. http://dx.doi. org/10.4172/2161-0444.S1-004.
  • • Vlahov, I. R., & Leamon, C. P. (2012). Engineering folate–drug conjugates to target cancer: from chemistry to clinic. Bioconjugate Chemistry, 23(7),1357–1369. http://dx.doi.org/10.1021/bc2005522.
  • • Vlahov, I. R., Leamon, C. P., Parker, M. A., Howard, S. J., Santhapuram, H. K., Satyam, A., & Reddy, J. A. (2009). Inventors; EndocyteInc, assignee. Vitamin receptor binding drug delivery conjugates, United States patent US 7,601,332.
  • • Wang, X., Li, J., Wang, Y., Koenig, L., Gjyrezi, A., Giannakakou, P. … Shin, D. M. (2011). A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano, 5(8), 6184–6194. http://dx.doi.org/10.1021/nn200739q.
  • • Wang, Y., Li, P., Chen, L., Gao, W., & Zeng, F. (2015). Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acidconjugated nanoparticles. Drug Delivery, 22(2), 191–198. http:// dx.doi.org/10.3109/10717544.2013.875603.
  • • Yuxuan, D., Xingguang, C., Xinzhou, B., Chunxia L., Na, Y., Ying, Z., Jiaqi, Z., & Mian, F. (2019). Synthesis and anti-cancer evaluation of folic acid-peptide- paclitaxel conjugates for addressing drug resistance. European Journal of Medicinal Chemistry, 171, 104–115. doi: 10.1016/j.ejmech.2019.03.031