V-KAT LEVHALI GÜNEŞ ENERJİLİ HAVA ISITICISININ ORTAM ISITMASI İÇİN TEORİK VE DENEYSEL İNCELEMESİ

Bu çalışma, 84 m2 alana sahip bir ofise ısıtma sağlamak için tasarlanan V-Kat levhalı güneş enerjili hava ısıtıcısının ısıl performansını incelemektedir. Hava ısıtıcısının ısıl performansı hem teorik hem de deneysel olarak incelenmiştir. V-Kat levhalı güneş enerjili hava ısıtıcıları daha önce ofislere ısıtma sağlamak için çalışılmamıştır. Dolayısıyla bu çalışma bu sistemleri bu amaç için inceleyerek literatüre katkı sunmayı hedeflemektedir. Ofisin ısıtma yükü, Energy Plus bina simülasyon yazılımı ile 4546 W olarak hesaplanmıştır. Hava ısıtıcısının ısıl performansı, hava ısıtıcısı enerji denklemlerinin geliştirilen MATLAB kodu kullanılarak çözülmesi ile ve aynı zamanda hava ısıtıcısı işletme değişkenlerinin (örn. bileşen sıcaklıkları, hava hızı vb.) ölçülmesi ile incelenmiştir. Hava ısıtıcısının her bir bileşeninin sıcaklığı, faydalı ısı üretimi, ısıl verim, ısıtma yükünü karşılamak için gerekli olan hava ısıtıcısı sayısı ve karşılık gelen alanın elde edilmesi amaçlanmaktadır. Deneysel incelemenin sonucunda ısıtma yükünü karşılamak için 16 m2 lik 9 adet hava ısıtıcısı gerekirken, teorik incelemede yükü karşılamak için10 m2 lik 6 adet hava ısıtıcısının gerekli olduğu sonucu ortaya çıkmıştır.

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF V-CORRUGATED SOLAR AIR HEATER FOR SPACE HEATING

This work is an effort to investigate the thermal performance of a V-Corrugated Solar Air Heater (SAH), which is intended for supplying heating to an office space having a floor area of 84 m2. Thermal performance investigation has been carried out both theoretically and experimentally. V-Corrugated SAHs have not been investigated for space heating in offices, hence this study aims to contribute by proposing and promoting them for this purpose. The load of the office space has been evaluated by the Energy Plus building simulation program as 4546 W. Thermal performance of the SAH is investigated by solving the governing equations with developed MATLAB code and concurrently by carrying out real-time monitoring of the operating parameters (e.g. component temperatures, air speed, etc.) of the SAH. It is aimed to obtain the temperature of each component of the SAH, useful heat output, thermal efficiency, number of SAHs and the corresponding area that is necessary to meet the heating load. It is found that 9 SAHs with 16 m2 are required to supply the target load for the experimental case and 6 SAHs with 10 m2 for the theoretical case.

___

  • Agathokleous R., Barone G., Buonomano A., Forzano C., Kalogirou S. A. and Palombo A, 2019, Building Facade Integrated Solar Thermal Collectors For Air Heating: Experimentation, Modelling and Applications, Applied Energy, 239, 658–679.
  • Al-Kayiem H. H. and Yassen T. A., 2015, On the Natural Convection Heat Transfer in a Rectangular Passage Solar Air Heater, Solar Energy, 112, 310–318.
  • Alteer K., 2017, Installation and Performance Testing of Solar Air Heater for Office Heating, M.Sc. Thesis Eastern Mediterranean University, Famagusta.
  • ASHRAE, 2017, ASHRAE Fundamentals 2017, (SI Edition), ASHRAE, Atlanta.
  • Bayrak F. and Oztop H. F., 2015, Experimental Analysis of Thermal Performance of Solar Air Collectors with Aluminum Foam Obstacles. J. of Thermal Science and Technology, 35, 11–20.
  • CIBSE, 2015, Environmental design CIBSE Guide A, (Eighth Edition), The Chartered Institution of Building Services Engineers, London.
  • Çiftçi E., Khanlari A., Sözen A., Aytaç İ. and Tuncer, A. D., 2021, Energy And Exergy Analysis Of A Photovoltaic Thermal (PVT) System Used In Solar Dryer: A Numerical and Experimental Investigation, Renewable Energy, 180, 410–423.
  • Duffie J. A., Beckman W. A. and Blair N., 2020. Solar Engineering of Thermal Processes, Photovoltaics and Wind, (5th ed.), Wiley, New Jersey.
  • El-Sebaii A. A., Aboul-Enein S., Ramadan M. R. I., Shalaby S. M. and Moharram B. M., 2011, Thermal Performance Investigation of Double Pass-Finned Plate Solar Air Heater, Applied Energy, 88(5), 1727–1739.
  • Fan W., Kokogiannakis G. and Ma Z., 2019a, Optimisation of Life Cycle Performance of a Double-Pass Photovoltaic Thermal-Solar Air Heater with Heat Pipes, Renewable Energy, 138, 90–105.
  • Fan W., Kokogiannakis G. and Ma Z., 2019b, Integrative Modelling and Optimisation of a Desiccant Cooling System Coupled with a Photovoltaic Thermal-Solar Air Heater, Solar Energy, 193, 929–947.
  • Fan W., Kokogiannakis G., Ma, Z. and Cooper P., 2017, Development of a Dynamic Model for a Hybrid Photovoltaic Thermal Collector – Solar Air Heater with Fins. Renewable Energy, 101, 816–834. Gao W., Lin W., and Lu E., 2000, Numerical Study on Natural Convection Inside the Channel Between the Flat-Plate Cover and Sine-Wave Absorber of a Cross-Corrugated Solar Air Heater, Energy Conversion and Management, 41, 145–151.
  • Gawande V. B., Dhoble A. S., Zodpe, D. B. and Chamoli S., 2016. Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater with Reverse L-Shaped Ribs. Solar Energy, 131, 275–295.
  • Gilani S. E., Al-Kayiem,H. H., Woldemicheal D. E., and Gilani S. I., 2017, Performance Enhancement of Free Convective Solar Air Heater by Pin Protrusions on yhe Absorber. Solar Energy, 151, 173–185.
  • Hedayatizadeh M., Sarhaddi F., Safavinejad A., Ranjbar F. and Chaji H., 2016, Exergy Loss-Based Efficiency Optimization of a Double-Pass/Glazed V-Corrugated Plate Solar Air Heater. Energy, 94, 799–810.
  • Holman J. P., 2012, Experimental Methods for Engineers (Eighth Edition), McGraw-Hill, New York.
  • Internet, 2021, International Energy Agency, World Energy Outlook 2021, www.iea.org/weo.
  • Jain D. and Jain R. K., 2004, Performance Evaluation of an Inclined Multi-Pass Solar Air Heater with In-Built Thermal Storage on Deep-Bed Drying Application. Journal of Food Engineering, 65(4), 497–509.
  • Kareem M. W., Habib K., Ruslan M. H. and Saha B. B., 2017, Thermal Performance Study of a Multi-Pass Solar Air Heating Collector System for Drying of Roselle (Hibiscus Sabdariffa). Renewable Energy, 113, 281–292.
  • Internet, 2021, kıb-tek (Kıbrıs Türk Elektrik Kurumu), Production-Consumption Statistics, https://www.kibtek.com/statistikler/.
  • Kumar A., Singh A. P., Akshayveer and Singh O. P., 2022, Performance Characteristics of a New Curved Double-Pass Counter Flow Solar Air Heater. Energy, 239.
  • Lin W., Gao W. and Liu T., 2006, A Parametric Study on the Thermal Performance of Cross-Corrugated Solar Air Collectors. Applied Thermal Engineering, 26(10), 1043–1053.
  • Liu T., Lin W., Gao W. and Xia, C., 2007, A Comparative Study of the Thermal Performances of Cross-Corrugated And V-Groove Solar Air Collectors, International Journal of Green Energy, 4(4), 427–451.
  • Internet, 2022, North Cyprus Meteorological Office, Cyprus Climate. General Weather of North Cyprus, http://kktcmeteor.org/meteorolojikbilgi/kibris-iklimi#
  • Prakash O., Kumar A., Samsher Dey K. and Aman A., 2022, Exergy and Energy Analysis of Sensible Heat Storage Based Double Pass Hybrid Solar Air Heater, Sustainable Energy Technologies and Assessments, 49.
  • Sahebari R., Enesi V. and Tamer U., 2013, Designing and Manufacturing of a Solar Air Heater, B.Sc. Thesis, Eastern Mediterranean University, Famagusta.
  • Sparrow E. M., and Lin S. H., 1962, Absorption of Thermal Radiation in A V-Groove Cavity, International Journal of Heat and Mass Transfer, 5(11), 1111–1115.
  • Turkish Standards Institute, 2008, TSE 825 Thermal Insulation Requirements for Buildings. Turkish Standards Institute, Ankara.
  • U.S. Department of Energy, 2016a, EnergyPlusTM Version 8.6 Documentation Engineering Reference, U.S. Department of Energym, Berkeley.
  • U.S. Department of Energy, 2016b, EnergyPlusTM Version 8.6 Documentation Getting Started, U.S. Department of Energy, Berkeley.
  • U.S. Department of Energy, 2016c, EnergyPlusTM Version 8.6 Documentation Input Output Reference (Version 8.6), U.S. Department of Energy, Berkeley.
  • Yildirim C., and Solmuş, İ., 2014, Investigaton of Double Pass Solar Air Collector Channel Depth on Thermohydraulic Efficiency. J. of Thermal Science and Technology, 34, 111–122.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ