OPTİMUM DUVAR YALITIMI KALINLIKLARININ ÜLKE ÇAPINDA HARİTALANMASI: STOKASTİK YAKLAŞIM

Binalarda enerji tüketimi tüm dünyadaki birincil enerji tüketiminin önemli bir kısmına karşılık gelmektedir. Bina sektörü ayrıca sera gazı salınımını düşürerek çevresel etkinin azaltılmasına yönelik büyük bir potansiyel teşkil etmektedir. Gelişmekte olan birçok ülkenin ulusal stratejileri enerjinin korunmasına ilişkin konularla şekillenmektedir. Enerji verimliliğinin ve üretkenliğin arttırılması Türkiye ulusal enerji stratejisinin ana unsurlarından birisi olarak belirtilmiştir. Bina kılıfına yalıtım uygulamak binalarda enerji tüketimini azaltmak için etkili bir yoldur. Dış duvarlara uygulanacak olan optimum yalıtım kalınlığının belirlenmesi önem arz etmektedir. Bu çalışmada Türkiye’deki 81 ilin optimum yalıtım kalınlığını belirlemek amacıyla stokastik bir yaklaşım benimsenmiştir. Yaygın olarak kullanılan deterministik yaklaşımın aksine, stokastik yaklaşım sürecin olasılıksal doğasını bünyesinde barındırır ve optimum yalıtım kalınlığını tek bir değer yerine bir olasılık dağılım grafiği olarak sunar. Bu amaçla, birtakım yalıtım kalınlıkları (1-20 cm) alternatif olarak kabul edilmiş ve optimum alternatif yalıtım uygulamasının maliyeti ile yıllık enerji tasarruflarını dikkate alan bir yaşam dönemi maliyet analizi yapılarak belirlenmiştir. Şehirlerin aylık ortalama sıcaklıkları ve enflasyon ile iskonto oranları gibi finansal parametreler stokastik elemanlar olarak kabul edilmiştir. Yaşam dönemi maliyet analizinin sonuçları (i) her bir şehir için optimum yalıtım kalınlığını bir olasılık dağılım grafiği olarak elde etmek ve (ii) Türkiye için bir optimum yalıtım kalınlığı haritası oluşturmak amacıyla kullanılmıştır.

NATIONWIDE MAPPING OF OPTIMUM WALL INSULATION THICKNESSES: A STOCHASTIC APPROACH

Energy consumption in buildings accounts for a notable part of the primary energy consumption all over the world. The building industry also has a great potential to decrease the environmental impact by reducing greenhouse gas emissions. The national strategies of many developing countries are shaped by energy conservation issues. Improving energy efficiency and productivity is stated as one of the main elements of the Turkish national energy strategy. An efficient way to decrease energy consumption in buildings is to implement insulation on the building envelope. Identifying the optimum insulation thickness to be applied on the exterior walls is of prime importance. This study adapts a stochastic approach to determine optimum insulation thickness for 81 cities in Turkey. The stochastic approach, unlike the commonly used deterministic approach, incorporates the probabilistic nature of the process and presents the optimum insulation thickness as a probability distribution graph rather than a single value. For this purpose, a number of insulation thicknesses (1-20 cm) were regarded as the alternatives and the optimum alternative was determined based on life cycle costing analysis involving the cost of insulation application and annual energy savings. The average monthly temperature of each city and financial parameters such as the inflation and discount rates were considered as the stochastic elements. The results of the life cycle costing analysis were used to (i) identify the optimum thicknesses in each city as a probability distribution graph and (ii) generate an optimum insulation thickness map for Turkey.

___

  • Akan, A. E., 2021, Determination and modeling of optimum insulation thickness for thermal insulation of buildings in all city centers of Turkey, International Journal of Thermophysics, 42 (4), 1-34.
  • Akbas, A., Freer, J., Ozdemir, H., Bates, P. D., and Turp, M. T., 2020, What about reservoirs? Questioning anthropogenic and climatic interferences on water availability, Hydrological Processes, 34 (26), 5441-5455.
  • Aktemur, C. and Atikol, U., 2017, Optimum insulation thickness for the exterior walls of buildings in Turkey based on different materials, energy sources and climate regions, International Journal of Engineering Technologies IJET, 3 (2), 72-82.
  • Akyuz, M. K., Altuntas, O., Sogut, M. Z., Karakoc, T. H., and Kurama, S., 2018, Determination of optimum insulation thickness for building's walls with respect to different insulation materials: a case study of International Hasan Polatkan Airport terminal, International Journal of Sustainable Aviation, 4 (2), 147-161.
  • An, N., Turp, M. T., Akbaş, A., Öztürk, Ö., and Kurnaz, M. L., 2018, Türkiye’nin değişen ikliminde ısıtma ve soğutma gün derecelerinin gelecek projeksiyonları [Future projections of heating and cooling degree days in a changing climate of Turkey], Marmara Journal of Pure and Applied Sciences, 30 (3), 227-240.
  • An, N., Turp, M. T., Türkeş, M., and Kurnaz, M. L., 2020, Mid-term impact of climate change on hazelnut yield, Agriculture, 10 (5), 159.
  • Aydin, N. and Biyikoglu, A., 2020, The effect of cooling load on optimum insulation thickness in residential buildings, Journal of Thermal Science and Technology, 40 (2), 281-291.
  • Aydin, N. and Biyikoglu, A., 2021, Determination of optimum insulation thickness by life cycle cost analysis for residential buildings in Turkey, Science and Technology for the Built Environment, 27 (1), 2-13.
  • Baniassadi, A., Sajadi, B., Amidpour, M., and Noori, N., 2016, Economic optimization of PCM and insulation layer thickness in residential buildings, Sustainable Energy Technologies and Assessments, 14, 92-99.
  • Bolatturk, A., 2006, Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey, Applied Thermal Engineering, 26 (11-12), 1301-1309. Bolatturk, A., 2008, Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey, Building and Environment, 43 (6), 1055-1064.
  • Canbolat, A. S., Bademlioglu, A. H., and Kaynakli, O., 2018, Determination of proper insulation thickness for building walls regarding economic consideration, International Research Journal of Advanced Engineering and Science, 4, 173-176.
  • Caglayan, S., Ozorhon, B., Ozcan-Deniz, G., and Yigit, S., 2020, A lifecycle costing approach to determine the optimum insulation thickness of existing buildings, Journal of Thermal Science and Technology, 40 (1), 1-14.
  • Cao, X., Dai, X., and Liu, J., 2016, Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade, Energy and Buildings, 128, 198-213.
  • Comakli, K. and Yuksel, B., 2003, Optimum insulation thickness of external walls for energy saving, Applied Thermal Engineering, 23 (4), 473-479.
  • Daouas, N., Hassen, Z., and Aissia, H. B., 2010, Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia, Applied Thermal Engineering, 30 (4), 319-326.
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabaci, H., and Coşkun, M., 2017, Climate change projections for Turkey: Three models and two scenarios, Turkish Journal of Water Science and Management, 1 (1), 22-43.
  • Demiroglu, O. C., Turp, M. T., Ozturk, T., and Kurnaz, M. L., 2016, Impact of climate change on natural snow reliability, snowmaking capacities, and wind conditions of ski resorts in Northeast Turkey: A dynamical downscaling approach, Atmosphere, 7 (4), 52.
  • Demiroglu, O. C., Turp, M. T., Kurnaz, M. L., and Abegg, B., 2021, The Ski Climate Index (SCI): fuzzification and a regional climate modeling application for Turkey, International Journal of Biometeorology, 65 (5), 763-777.
  • Dombayci, O. A., Atalay, O., Acar, S. G., Ulu, E. Y., and Ozturk, H. K., 2017, Thermoeconomic method for determination of optimum insulation thickness of external walls for the houses: Case study for Turkey, Sustainable Energy Technologies and Assessments, 22, 1-8.
  • Dombayci, O. A., Golcu, M., and Pancar, Y., 2006, Optimization of insulation thickness for external walls using different energy-sources, Applied Energy, 83 (9), 921-928.
  • Ekici, B. B., Gulten, A. A., and Aksoy, U. T., 2012, A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey, Applied Energy, 92, 211-217.
  • Erturk, M., 2016, Optimum insulation thicknesses of pipes with respect to different insulation materials, fuels and climate zones in Turkey, Energy, 113, 991-1003.
  • Evin, D. and Ucar, A., 2019, Energy impact and eco-efficiency of the envelope insulation in residential buildings in Turkey, Applied Thermal Engineering, 154, 573-584.
  • Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., ..., and Stevens, B., 2013, Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5, Journal of Advances in Modeling Earth Systems, 5 (3), 572-597.
  • Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., ..., and Brankovic, C., 2012, RegCM4: model description and preliminary tests over multiple CORDEX domains, Climate Research, 52, 7-29.
  • Gulten, A., 2020, Determination of optimum insulation thickness using the entransy based thermoeconomic and environmental analysis: A case study for Turkey, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42 (2), 219-232.
  • IEO (International Energy Outlook), 2013, Technical Report, Energy Information Administration, Washington, United States.
  • IGDAS, 2021, Istanbul Gaz Dagitim Sanayi ve Ticaret A.S., Retailing Price, https://www.igdas.istanbul/.
  • Jraida, K., Farchi, A., Mounir, B., and Mounir, I., 2017, A study on the optimum insulation thicknesses of building walls with respect to different zones in Morocco, International Journal of Ambient Energy, 38 (6), 550-555.
  • Kaya, M., Firat, I., and Comakli, O., 2016, Economic analysis of effect on energy saving of thermal insulation at buildings in Erzincan Province, Journal of Thermal Science and Technology, 36 (1), 47-55.
  • Kayfeci, M., 2014, Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials, Energy and Buildings, 69, 278-284. Kaynakli, O., 2008, A study on residential heating energy requirement and optimum insulation thickness, Renewable Energy, 33 (6), 1164-1172.
  • Kaynakli, O., 2013, Optimum thermal insulation thicknesses and payback periods for building walls in Turkey, Journal of Thermal Science and Technology, 33 (2), 45-55.
  • Kon, O. and Yuksel, B., 2016, Optimum insulation thickness calculated by measuring of roof, floor and exterior walls in buildings used for different purposes, Journal of Thermal Science and Technology, 36 (1), 17-27.
  • Kurekci, N. A., 2016, Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers, Energy and Buildings, 118, 197-213.
  • Leuenberger, M., Parente, J., Tonini, M., Pereira, M. G., and Kanevski, M., 2018, Wildfire susceptibility mapping: Deterministic vs. stochastic approaches, Environmental Modelling & Software, 101, 194-203.
  • Liu, X., Chen, Y., Ge, H., Fazio, P., Chen, G., and Guo, X., 2015, Determination of optimum insulation thickness for building walls with moisture transfer in hot summer and cold winter zone of China, Energy and Buildings, 109, 361-368.
  • Maleviti, E., Wehrmeyer, W., and Mulugetta, Y., 2013, An Empirical Assessment to Express the Variability of Buildings' Energy Consumption, International Journal of Energy Optimization and Engineering (IJEOE), 2 (3), 55-67.
  • MENR (Republic of Turkey Ministry of Energy and Natural Resources), 2020, Energy Efficiency, http://www.enerji.gov.tr/en-US/Pages/Energy-Efficiency.
  • MFA (Republic of Turkey Ministry of Foreign Affairs), 2021, Turkey’s Energy Profile and Strategy, http://www.mfa.gov.tr/turkeys-energy-strategy.en.mfa.
  • Nematchoua, M. K., Ricciardi, P., Reiter, S., and Yvon, A., 2017, A comparative study on optimum insulation thickness of walls and energy savings in equatorial and tropical climate, International Journal of Sustainable Built Environment, 6 (1), 170-182.
  • Ozkan, D. B. and Onan, C., 2011, Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey, Applied Energy, 88 (4), 1331-1342.
  • Ozel, G., Acikkalp, E., Gorgun, B., Yamik, H., and Caner, N., 2015, Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach, Sustainable Energy Technologies and Assessments, 11, 87-91.
  • Revelle, C. S., Whitlatch, E. E., and Wright, J. R., 2005, Civil and Environmental Systems Engineering, Prentice Hall PTR, New Jersey.
  • Riahi, K., Grübler, A., and Nakicenovic, N., 2007, Scenarios of long-term socio-economic and environmental development under climate stabilization, Technological Forecasting and Social Change, 74 (7), 887-935.
  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., ..., and Rafaj, P., 2011, RCP 8.5 - A scenario of comparatively high greenhouse gas emissions, Climatic Change, 109 (1), 33-57.
  • Sahin, M., Kaya, Y., and Uyar, M., 2013, Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data, Advances in Space Research, 51 (5), 891-904. Sherwood, S. C., Bony, S., and Dufresne, J. L., 2014, Spread in model climate sensitivity traced to atmospheric convective mixing, Nature, 505 (7481), 37-42.
  • Sisman, N., Kahya, E., Aras, N., and Aras, H., 2007, Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions, Energy Policy, 35 (10), 5151-5155.
  • TCMB (Central Bank of Turkish Republic Interest Rate Statistics), 2021, Interest Rate Statistics, https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Statistics/Interest+Rate+Statistics.
  • TSI (Turkish Standard Institution), 2008, TS 825: Thermal insulation requirements for buildings, TSI, Ankara, Turkey.
  • Turp, M. T., Öztürk, T., Türkeş, M., and Kurnaz, M. L., 2014, RegCM4.3.5 bölgesel iklim modelini kullanarak Türkiye ve çevresi bölgelerin yakın gelecekteki hava sıcaklığı ve yağış klimatolojileri için öngörülen değişikliklerin incelenmesi [Investigation of projected changes for near future air temperature and precipitation climatology of Turkey and surrounding regions by using the regional climate model RegCM4.3.5], Aegean Geographical Journal, 23 (1), 1-24.
  • Ucar, A. and Balo, F., 2009, Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey, Applied Energy, 86 (5), 730-736.
  • Zhan, J., Liu, W., Wu, F., Li, Z., and Wang, C., 2018, Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou city, Journal of Cleaner Production, 194, 318-326.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ