NUMERICAL INVESTIGATION OF HEAT TRANSFER USING IMPINGING JETS ON TRIANGULAR AND SQUARE RIBBED ROUGHENED WALLS

Bu çalışmada, çoklu çarpmalı jetler kullanarak üçgen ve kare kanatçıklı yüzeylerin soğutulması sunulmuştur. 7x3 olarak dikdörtgen dizilime sahip dairesel jetler kullanılarak çalışma gerçekleştirilmiştir. Re sayısının, jet-plaka mesafesinin ve kanatçık diziliminin akış ve ısı transferine olan etkisi sayısal olarak irdelenmiştir. İki kanatçık dizilimi incelenmiştir. A dizilimi jetlerin doğrudan kanatçıkların üstüne çarpmasını, B dizilimi ise jetlerin iki kanatçığın ortasına çarpması durumlarını göstermektedir. İki komşu jetin duvar jetleri artan Re sayısı ile daha şiddetli bir şekilde etkileşmektedir. En yüksek ve en düşük ortalama ısı transferi değerleri tüm kanatçık geometrilerinde sırasıyla H/d=8 ve H/d=4-6 oluşmaktadır. Üçgen kanatçıklı yüzeylerde çarpma noktası Nu sayısı değerleri A düzenlemesinde B düzenlemesine göre daha yüksek olduğu görülmüştür

ÜÇGEN VE KARE KANATÇIKLI YÜZEYLER ÜSTÜNDEKİ ÇARPAN AKIŞKAN JETLER KULLANILARAK ISI TRANSFERİNİN SAYISAL İNCELENMESİ

This paper presents a heat removal study on triangular and square ribbed surfaces under an array of impinging air jets. The investigation was carried out using nozzles with a 7x3 rectangular array of circular jets. The effect of Re number, jet-to-plate distance, and rib arrangement on heat transfer and fluid flow characteristics was examined numerically. Two arrangements have been studied. Arrangement A considers the situation when the cooling jets are directed towards the ribs, while arrangement B considers the situation when the jets are directed towards the centre line of the cavity between two ribs. Wall jets of neighboring jets have a stronger interaction with increasing Reynolds number. The lowest and highest local heat transfer for all rib geometries was obtained for H/d=8 and H/d=4-6, respectively. On triangular ribbed surfaces the stagnation point Nusselt number values for arrangement A are significantly higher than the stagnation point Nusselt numbers for arrangement B

___

  • Bredberg J., Davidson L., 2004, Low-Reynolds Number Turbulence Models: An Approach for Reducing Mesh Sensitivity, J. of Fluids Engineering, Transactions of the ASME, 126, 14-21.
  • Caliskan S., 2013, Flow and Heat Transfer characteristics of transverse perforated ribs under impingement jets, Int. J. of Heat and Mass Transfer, 66, 244-260.
  • Caliskan S., Baskaya S., 2012, Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs, Int. J. of Thermal Sciences, 59, 234-246.
  • Caliskan S., Baskaya S., Calisir T., 2014, Experimental and numerical investigation of geometry effects on multiple impinging air jets, Int. J. of Heat and Mass Transfer, 75, 685-703.
  • Celik I.B., Ghia U., Roache P.J., Freitas C.J., Coleman H., Raad P.E., 2008, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, ASME J. Fluids Eng., 130(7), 1-4.
  • Gau C., Lee I.C., 1992, Impingement cooling flow structure and heat transfer along rib-roughened walls, Int. J. of Heat and Mass Transfer, 35(11), 3009-3020.
  • Gau C., Lee I.C., 2000, Flow and impingement cooling heat transfer along triangular rib-roughened walls, Int. J. of Heat and Mass Transfer, 43, 4405-4418.
  • Katti V., Prabhu S.V., 2008, Influence of spanwise pitch on local heat transfer distribution for in-line arrays of circular jets with spent air flow in two opposite directions, Experimental Thermal and Fluid Science, 33, 84-95.
  • Katti V., Prabhu S.V., 2009, Influence of Streamwise pitch on local heat Transfer distribution for in-line arrays of circular jets with spent air flow in two opposite directions, Experimental Heat Transfer, 22, 228-256.
  • Katti V., Prabhu S.V., 2009, Influence of streamwise pitch on the local heat transfer characteristics for in-line arrays of circular jets with crossflow of spent air in one direction, Heat Mass Transfer, 45, 1167–1184.
  • Koseoglu M.F., Baskaya S., 2010, The role of jet inlet geometry in impinging jet heat transfer, modeling and experiments, Int. J. of Thermal Sciences, 49, 1-10.
  • Lytle D., Webb B.W., 1994, Air jet impingement heat transfer at low nozzle-plate spacings, Int. J. Heat Mass Transfer, 31(12), 1687-1697.
  • Patel V.C., Rodi R.W., Scheuere G., 1985, Turbulence models for near wall and low Reynolds number flows: a review, AIAA Journal, 23, 1308-1319.
  • Robinson A.J., Schnitzler E., 2007, An experimental investigation of free and submerged miniature liquid jet impingement heat transfer, Experimental Thermal and Fluid Science, 32, 1-13.
  • San J.Y, Lai M.D., 2001, Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets, Int. J. of Heat and Mass Transfer, 44, 3997-4007.
  • San J.Y., Shiao W.Z., 2006, Effects of jet plate size and plate spacing on the stagnation Nusselt number for a confined circular air jet impinging on a flat surface, Int. J. of Heat and Mass Transfer, 49, 3477–3486.
  • Wang S.J., Mujumdar A.S., 2005, A comparative study of five low Reynolds number k–ε models for impingement heat transfer, Applied Thermal Engineering, 25, 31-44.
  • Wang T., Lin M., Bunker R.S., 2005, Flow and heat transfer of confined impingement jets cooling using a 3- D transient liquid crystal scheme, Int. J. of Heat and Mass Transfer, 47, 4887-4903