İKİ ZAMANLI TERS-DOĞRU AKIŞLI BENZİNLİ BİR MOTORUN YANMA ANALİZİ

Schnürle tip iki zamanlı motorların kusurlarını ortadan kaldırmak amacıyla geliştirilen süpürme yöntemlerinden biri olan ters-doğru akışlı tip süpürme yöntemi üzerine yapılan çalışmaların çoğu akış süreçlerinin geliştirilmesi ve motor performansının belirlenmesi ile alakalıdır. Bu güne kadar bu tip motorların yanma karakteristiklerine ilişkin hiçbir çalışma yayınlanmamıştır. Bu çalışmada, gerçek zamanlı bir yanma analizi sistemi, yanma değerlerinin çevrimiçi analizi ve verilerin toplanması için iki zamanlı ters-doğru akışlı benzinli bir motora deneysel olarak uygulanmıştır. Deneyler tam yükte, 1800 1/min'de ve ateşleme avansının ÜÖN'dan önce 16-24 ºKMA arasında 4 er birimlik adımlarla değiştirilmesi ile gerçekleştirilmiş ve silindir basıncı, kütlesel yanma oranı profili, ısı salınımı hızı ve indike verim değişimleri incelenmiştir. Bu verilerin analizi, maksimum indike verimi veren ideal yanma fazının tespitini mümkün kılar. Yapılan testler, test motoru için en ideal yanma fazının ateşleme avansının ÜÖN'dan önce 20 ºKMA'ya ayarlanması ile elde edildiğini göstermiştir

COMBUSTION ANALYSIS OF A TWO STROKE REVERSE-UNIFLOW GASOLINE ENGINE

Most of the studies conducted on reverse-uniflow type scavenging method developed in order to remove the deficiencies of the Schnürle type two stroke engines are related with developing flow processes and determining engine performance. Until today, no studies related with combustion characteristics of these engines were published. In this study, a real time combustion analysis system was experimentally applied to a two stroke reverse-uniflow engine for online analysis of the combustion values and gathering data. The experiments were conducted under full load, 1800 1/min and by changing ignition timing before TDC between 16 -24 ºCA by steps of 4 units each and accordingly cylinder pressure, mass fraction burned profile, heat release rate and indicated efficiency changes were examined. The analysis of this data allows the determination of ideal combustion phase providing maximum indicated efficiency. The performed tests show that most ideal combustion phase was obtained by adjusting the ignition timing to 20 ºCA before TDC

___

  • Tribotte, P., Ravet, F., Dugue, V., Obernesser and P., Quechon, N., 2012, Two Strokes Diesel Engine – Promising Solution to Reduce CO2 Emissions, Procedia – Social and Behavioral Sciences, 48, 2295-2314.
  • Andrawi, A., M., Aziz, A., A., Said, M., F., M. and Latiff, Z., A., 2014, An Experimental Study On The Influence Of EGR Rate and Fuel Octane Number On The Combustion Characteristics Of A CAI Two-Stroke Cycle Engine, Applied Thermal Engineering, 71, 248-258.
  • Payri, F., Galindo, J., Climent, H., Pastor, J.M. and Gaia, C., 2001, Optimisation Of The Scavenging And Injection Processes Of An Air-Assisted Direct Fuel Injection 50cc 2-Stroke S.I. Engine By Means Of Modeling, SAE, Paper No: 2001-01-1814.
  • Omidi Kashani, B., 2004, The Improvement Of Combustion Process and Reduction Of Unburned Hydrocarbon Emission In A Two-Stroke Motorcycle, Iranian Journal of science & Technology, Transaction B: Engineering, 28, 505-508.
  • Bosman, C.B. and Goldsborough, S., 2008, Developing A 10 cc Single-Valve, Reverse Uniflow, 2S Engine, SAE, Paper No: 2008-01-0953.
  • Moriyoshi, Y., Kukuchi, K., Morikawa, K. and Takimoto, H., 2001, Numerical Analysis of Mixture Preparation in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine, SAE, Paper No: 2001-01-1815.
  • Moriyoshi, Y., Kukuchi, K., Morikawa, K. and Takimoto, H., 2001, Development and Evaluation of A Reverse Uniflow-Type Two-Stroke Gasoline DI Engine, SAE, Paper No: 2001-01-1839.
  • Johnson, M.V. and Goldsborough, S.S., 2008, A smallScale Flow Rig for Swirl Studies of A Single-Valve, Reverse Uniflow 2S Engine, SAE, Paper No: 2008-01-0609.
  • Moriyoshi, Y., Morikawa, K. and Takimoto, H., 2002, Analysis of a Mixture Formation Process In A Reverse Uniflow-Type Two-Stroke Gasoline DI Engine, SAE, Paper No: 2002-32-1774.
  • Junpei, K. and Yasuo, M., 2004, Performance Tests of Reverse-Uniflow Type 2-Stroke Direct Injection Gasoline Engine. World Automotive Congress. Spain.
  • Moriyoshi, Y., Arai, M., Katsuta, J. and Morikawa, K., 2004, Performance Tests of Reverse-Uniflow Type 2- Stroke Direct Injection Gasoline Engine, SAE, Paper No: 2004-32-0040
  • Moriyoshi, Y., Arai, M., Katsuta, J. and Morikawa, K., 2004, Performance Analysis of Reverse-Uniflow Type 2- Stroke Direct Injection Gasoline Engine, SAE, Paper No: 2004-08-0088.
  • Magnusson, J., 2007, An Investigation of Maximum Brake Torque Timing Based On Ionization Current Feedback, M. sc Thesis, Linköping University, Department of Electrical Engineering, Sweden.
  • Xie, F.X., Li X.P., Wang, X.C., Su, Y. and Hong, W., 2013, Research On Using EGR and Ignition Timing To Control Load of A Spark-Ignition Engine Fueled With Methanol. Applied Thermal Engineering, 50, 1084-1091.
  • Caton, J.A., 2014, Combustion Phasing For Maximum Efficiency For Conventional and High Efficiency Engines. Energy Conversion and Management, 77, 564-576.
  • Szwaja, S. and Naber, J.D., 2010, Combustion of n-butanol In A Spark-İgnition IC Engine. Fuel, 89, 1573-1582.
  • Zhu, G.G., Daniels, C.F. and Winkelman J., 2003, MBT Timing Detection and Its Closed-Loop Control Using InCylinder Pressure Signal. SAE, Paper No: 2003-01-3266.
  • Ayala, F.A., Gerty M.D. and Heywood J.B., 2006, Effects of Combustion Phasing, Relative Air-Fuel Ratio, Compression Ratio, and Load On SI Engine Efficiency. SAE, Paper No: 2006-01-0229.
  • Ma, F., Wang, Y., Wang, J. and Zhao, S., 2008, Effects of Combustion Phasing, Combustion Duration, and Their Cyclic Variations On Spark-Ignition (SI) Engine Efficiency. Energy&Fuels, 22, 3022-3028.
  • Ponti, F., Ravaglioli, V., Serra, G. and Stola, F., 2009, Instantaneous Engine Speed Measurement and Processing for MFB50. Society of Automotive Engineers, SAE, Paper No: 2009-01-2747.
  • Ravaglioli, V., Morro, D., Serra, G. and Ponti, F., 2011, MFB50 On Board Evaluation Based On A ZeroDimensional ROHR Model, SAE, Paper No: 2011-01-1420.
  • Lavoie, G.A., Ortiz-Soto, E., Babajimopoulos, A., Martz, J.B. and Assanis, D.N., 2013, Thermodynamic Sweet Spot for High-Efficiency, Dilute, Boosted Gasoline Engines.
  • International Journal of Engine Research, 14(3), 260-278.
  • Carvalho, L., de Melo, T. and Neto, R., 2012, Investigation On The Fuel and Engine Parameters That Affect The Half Mass Fraction Burned (CA50) Optimum Crank Angle. SAE, Paper No: 2012-36-0498.
  • Holman J.P., 1971, Experimental Methods for Engineers, McGrawHill Book Company, New York, 37-52.
  • Blair, P.G., 1999, Design and Simulation Four Stroke Engines, PA:SAE Inc.,Warrendale, USA.
  • Çengel, Y.A., Boles M.A., 2006, Thermodynamics: An Engineering Approachs, 5 th Ed, McGrawHill College,Boston.
  • Brunt, M., Platts, K., 1999, Calculation of Heat Release In Direct Injection Diesel Engines, SAE Technical Paper, 1999-01-0187.
  • Heywood JB Sher E, 1999, Engineers SoA. The TwoStroke Cycle Engine: Its Development, Operation, And Design, Taylor & Francis.
  • Rassweiler M, Withrow L., 1938, Motion Pictures Of Engine Flames Correlated With Pressure Cards. SAE International, 1938-01-01.
  • Durgun, O.,Motor Çevrimlerinin Hesabı İçin Pratik Bir Yöntem, 1991, Mühendis ve Makine, 32(383): 19-28.
  • Changwei J., Chen L., Yongming Z., Xiaolong L. and Binbin G., 2012, Investigation On Idle Performance of A Spark-Ignited Ethanol Engine With Dimethyl Ether Addition. Fuel Processing Technology, 94, 94-100.