BİR BUZ DEPOLAMA TANKINDA SOĞUTUCU GEOMETRİSİNİN BUZ OLUŞUMUNA ETKİLERİNİN SAYISAL OLARAK İNCELENMESİ

Bu çalışmada, içerisinde su bulunan dikdörtgen bir soğu depolama tankına yerleştirilen farklı silindir geometrilerinin buz oluşumuna etkilerinin karşılaştırılması amaçlanmıştır Bu amaçla FLUENT paket programı kullanılarak akış alanının zamana bağlı sayısal çözümü yapılmıştır. Dikdörtgen tank iki boyutlu modellenerek analizler akış alanı simetrik olduğundan tankın yarısı için yapılmıştır. Tank içerisindeki su sıcaklığı 0 °C, 4 °C ve 12 °C olarak alınıp, silindir yüzey sıcaklığı -10 °C kabul edilerek, farklı geometrilerdeki silindir modelleri için Ab/As oranı (Buz alanı / kesit alanı), sıcaklık dağılımı, hız vektörleri ve sıvı oranları hesaplanmıştır. En yüksek buz oluşum oranları dairesel kesitli silindir modelinde görülmekle beraber, altıgen modeldeki katılaşma oranları da dairesel modele yakındır. Bununla beraber Tsu=12°C için kare ve üçgen 2 modellerinin katılaşma oranları arasındaki farkın da 0 °C ve 4 °C ile karşılaştırıldığında daha fazla olduğu görülmektedir

NUMERICAL INVESTIGATION OF THE EFFECTS OF GEOMETRIC VARIATIONS OF COOLING TUBES FOR ICE FORMATION IN ICE STORAGE TANK

In the present study, it is aimed to compare the effects of different geometries located in a rectangular ice storage tank on ice formation. For this aim FLUENT package program was used to solve the flow numerically depending on time. Rectangular tank was modeled in two dimensional and calculations were carried out on half of tank due to symmetry. Water temperature was assumed in the tank as 0 °C, 4 °C and 12 °C, cylinder surface temperatures were taken as -10 °C. Ratio of Ai/Ac (Formed ice area/Cross sectional area), temperature distribution, velocity vectors and liquid fraction were computed for different cooler geometries as circular, hexagonal, square, triangle 1 and triangle 2. The highest ice formation rate was seen in circular model, which was followed by hexagonal, triangle 1, square and triangle 2 models. While the highest solidification rate was seen in circular cross-section cylinders, solidification rates in hexagonal cylinders were rather close to the circular cross-section cylinders. However, the difference between square and triangle 2 models increased even more compared to cases when Ti= 0 °C and Ti= 4 °C

___

  • Al-Abidi A.A., Mat S., Sopian K., Sulaiman M.Y. and Mohammad A.T., 2013, Numerical Study Of PCM Solidification İn A Triplex Tube Heat Exchanger With İnternal And External Fins, International Journal of Heat Mass Transfer, 61, 684-695.
  • Dinçer I. and Rosen M. A., 2002, Thermal Energy Storage Systems and Applications. Michigan University, Wiley.
  • Doğan A., Akkuş S. and Başkaya, A., 2012, Numerical Analysis Of Natural Convection Heat Transfer From Annular Fins On A Horizontal Cylinder, Isı Bilimi ve Teknigi Dergisi-Journal of Thermal Science and Technology, 32, 2, 31-41.
  • Ezan M. A., Çetin L. and Erek A., 2011, Ice Thickness Measurement Method For Thermal Energy Storage Unit, , Isı Bilimi ve Teknigi Dergisi -Journal of Thermal Science and Technology, 31, 1, 1-10.
  • Fertelli A., Büyükalaca O. and Yılmaz A., 2009, Ice Formation Around A Horizontal Tube In A Rectangular Vessel, Isı Bilimi ve Teknigi Dergisi-Journal of Thermal Science and Technology, 29, 2, 75-87.
  • Fertelli A., Günhan G. and Buyruk E., 2016, Numerical investigation of effect of the position of the cylinder on solidification in a rectangular cavity, Heat Mass Transfer, DOI 10.1007/s00231-016-1842-1
  • Gebhart B. and Mollendrof J. C., 1977, A New Density Relation for Pure and Saline Water, Deep Sea Res., vol. 24, 831–848.
  • Günhan G., 2014, Enerji Depolama Tankinda Katilaşma Ve Erime Esnasinda Doğal Konveksiyon İle Isi Transferinin Sayisal Olarak İncelenmesi, MA Thesis, Cumhuriyet University, Sivas, Turkey.
  • Guo C.X. and Zhang W., 2008, Numerical Simulation and Parametric Study on New Type of High Temperature Latent Heat Thermal Energy Storage System, Energy Conversation Management, 49, 919-927.
  • Ismail K.A.R. and Morales R.I.R., 2009, A Numerical And Experimental Investigation Of Different Containers And PCM Options For Cold Storage Modular Units For Domestic Applications, International Journal of Heat and Mass Transfer, 52, 4195-4202.
  • Lipnicki Z. and Weigand B., 2012, An Experimental And Theoretical Study Of Solidification In A FreeConvection Flow Inside A Vertical Annular Enclosure, International Journal of Heat Mass Transfer, 55, 4, 655–664.
  • Longeon M., Soupart A., Fourmigue J.F., Bruch A. and Marty P., 2013, Experimental and Numerical Study Of Annular PCM Storage in The Presence Of Natural Convection, Applied Energy 112, 175-184.
  • Sasaguchı K., Kusano K. and Vıskanta R., 1997, A Numerical Analysis Of Solid-Liquid Phase Change Heat Transfer Around A Single And Two Horizontal, Vertically Spaced Cylinders İn A Rectangular Cavity, International Journal of Heat and Mass Transfer, 40, 6, 1343-1354.
  • Shıh Y. and Chou H., 2005, Numerical Study Of Solidification Around Staggered Cylinders İn A Fixed Space, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 48, 3, 239-260.
  • Stamatiou E. and Kawaji M., 2005, Thermal and Flow Behavior of Ice Slurries in a Vertical Rectangular Channel—Part II. Forced Convective Melting Heat Transfer, International Journal of Heat and Mass Transfer 48, 3544–3559.
  • Sugawara M., Komatsu Y. and Beer H., 2008, Melting And Freezing Around A Horizontal Cylinder Placed In A Square Cavity, Heat and Mass Transfer. 45, 83–92.
  • Tay N.H.S., Belusko M. and Bruno F., 2012, An Effectiveness-NTU Technique For Characterising TubeIn-Tank Phase Change Thermal Energy Storage Systems, Applied Energy 91, 309–319.
  • User’s, Guide, FLUENT, v. 6.1, 2003, FLUENT Inc.
  • Vyshak N.R. and Jilani G., 2007, Numerical Analysis of Latent Heat Thermal Energy Storage System. Energy Convers Manag, 48, 2161-2168.