MODELING OF TWO-DIMENSIONAL SOLIDIFICATION OF A FINITE CYLINDER

Silindirik geometride sıvı fazın ergime sıcaklığında bulunduğu donma problemi katı - sıvı sınırını sabitleme yöntemi kullanılarak çözülmüştür. Dış yüzeyde ergime sıcaklığının altında olmak üzere zamana veya pozisyona göre değişken olan sıcaklık sınır koşulu tanımlanmıştır. Daha önce kartezyen koordinat sisteminde kullanılmış olan koordinat dönüşümü tekniği radyal ve eksenel yönde uygulanarak çözüm bölgesi olarak sabit bir kare elde edilmiştir. Bu dönüşüm yöntemi her çözüm adımı için yeniden çözüm ağı oluşturmayı gerektirmektedir. Koordinat dönüşümü ile elde edilen enerji denklemi sonlu farklar yöntemi ile katı fazdaki sıcaklık dağılımı ve katı - sıvı sınırının ilerlemesini belirlemek üzere çözülmüş ve yükseklik/yarıçap oranı ve dış yüzeydeki konuma göre değişen sınır koşullarının etkileri incelenmiştir.

SONLU BİR SİLİNDİRDEKİ DONMANIN İKİ BOYUTLU MODELLENMESİ

Two-dimensional solidification problem of a finite cylinder, in which the liquid phase is initially at the fusion temperature, is solved by using a front fixing approach. The external surfaces of the cylinder are subjected to a temporally or spatially varying temperature below freezing. The method employed is based on one used for the solution of a solidification problem in Cartesian domain. A coordinate transformation is applied in both radial and axial directions to obtain a square computational domain. This transformation results in a computationally intensive grid generation for every time step of solution. Finite difference form of the transformed energy equation is solved for the temperature distribution in the solid phase and the solid-liquid interface energy balance is integrated for the new position of the moving solidification front. The effect of the aspect ratio and spatially varying boundary temperatures on solidification is studied.

___

  • Bilir L. and İlken Z., 2005, Total solidification time of a liquid phase change material enclosed in cylindirical/spherical containers, Applied Thermal Engineering, 25, 1488-1502
  • Bourdillon A.C, Verdin P.G., Thompson C.P., 2014, Numerical simulations of water freezing processes in cavities and cylindrical enclosures, Applied Thermal Engineering, Accepted Manuscript
  • Duda, J. L., Malone, M. F., Notter, R. H. and Vrentas, J.S., 1975, Analysis of Two dimensional diffusion controlled moving boundary problems, International Journal of Heat and Mass Transfer, 18, 901-910
  • Dursunkaya Z. and Odabaşı G., 2003, Numerical solution of solidification in a square prism using an algebraic grid generation technique, Heat and Mass Transfer, 40, 91-97
  • Hill, J. and Dewynne, J.,1986, On the inward solidification of cylinders," Quarterly of Applied Mathematics, 44, 59-70
  • Huang, C. L. and Shih. Y. P., 1975, A perturbation method for spherical and cylindrical solidification, Chemical Engineering Science, 30, 897-906
  • Huang R., Wu H., 2014, An immersed boundarythermal lattice Boltzmann method for solid-liquid phase change, Journal of Computational Physics, 277, 305-319
  • Huawei L., Saiwei L., Yu C. Zhiqiang S., T., 2014, The melting of phase change material in a cylinder shellwith hierarchical heat sink array, Applied Thermal Engineering, 73, 973-981
  • Kamal A.R.Ismail, Fatima A.M., Lino., Raquel C. R. Da Silva, Antonio B. De Jesus, Louryval C. Paixao, ,2014, Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube, International Journal of Thermal Sciences, 75, 184-193
  • Kharche S. and Howarth J.A.,2000, The inward solidification of a liquid cylinder with periodic axial perturbation of the boundary temperature or heat flux, International Communications in Heat and Mass Transfer, 27, Iss 7, 903-912
  • Saitoh, T., 1976, An Experimental Study of the Cylindrical and Two-dimensional Freezing of Water with Varying Wall Temperature, Technology Reports, Tohoku University, 41 No. 1, 61-72
  • Saitoh, T., 1978, Numerical method for multidimensional freezing problems in arbitrary domains, Trans. ASME, Journal of Heat Transfer, 100, 294-299
  • Saitou, M. and Hirata, A., 1993, A numerical method for solving the two-dimensional unsteady solidification problem with the motion of melt by using the boundary fitted co-ordinate system, International Journal for Numerical Methods in Engineering, 36, 403-416
  • Piotr L and Piotr F., 2012, Fixed Cartesian Grid based numerical model for solidification process of semitransparent materials I: Modelling and verification, International Journal of Heat and Mass Transfer, 55, 4941-4952
  • Rattanadecho P. and Wongwises S., 2008, Moving boundary- moving mesh analysis of freezing process in water saturated porous media using a combined transfinite interpolation and PDE mapping Methods, Journal of Heat Transfer, 130, 012601-1-10.
  • Voller, V. R. and Cross, M., 1981, Estimating the solidification/melting times of cylindrically symmetric regions, International Journal of Heat and Mass Transfer, 24, 1457-1462
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ