THREE-DIMENSIONAL CONJUGATE NUMERICAL ANALYSIS OF FIN AND TUBE HEAT EXCHANGERS WITH VARIOUS FIN THERMAL CONDUCTIVITY VALUES AND GEOMETRIC PARAMETERS

Isı değiştirici performansının, kanatçık malzemesinin ısıl iletkenliği ile yüksek bir alakası olduğu açıktır. Bu çalışmada, kanatlı borulu ısı değiştiricinin bütünleşik ısı transferi ve akış karakteristiklerini belirlemek için üç boyutlu modelleme ile sayısal hesaplamalar yapılmıştır. Kanatçık malzemesinin etkisi şu beş faktör ile birlikte incelenmiştir: Reynolds sayısı (Re), kanatçıklar arası mesafe (FP), kanatçık kalınlığı (FT), boru çapı (TD) ve kanatçık uzunluğu (FL). Bununla birlikte yüksek ısı iletim katsayılarına sahip malzemelerin gıda işleme gibi bazı proseslerde kullanılması uygun olmayabilmektedir. Malzemenin ısı iletim katsayısı, Re sayısının Nu sayısı üzerindeki etkisinde ufak bir artışa sebep olmakla birlikte boru çapının Nu sayısı üzerindeki etkisi incelendiğinde önemli bir parametre olduğu bulunmuştur. Benzer olarak kanatçık uzunluğunun ve kanatçık kalınlığının etkileri de kanatçık malzemesinden etkilenmektedir. Nu sayısının bulunması için bütün bu parametrelerin etkilerini içeren yeni bir korelasyon önerilmiştir.

FARKLI KANAT ISI İLETİM KATSAYILARI VE GEOMETRİK PARAMETRELER İÇİN KANATLI BORULU ISI DEĞİŞTİRİCİLERİN ÜÇ BOYUTLU BÜTÜNLEŞİK SAYISAL ANALİZİ

It is obvious that heat exchanger performance is highly related with fin material thermal conductivity. In this paper 3-D numerical simulations were performed for conjugate heat transfer and fluid flow characteristics of fin and tube heat exchanger. The effects of the fin materials interacting with five factors: Reynolds (Re) number, fin pitch (FP), fin thickness (FT), tube diameter (TD) and fin length (FL) were examined. However, high thermal conductivity materials may not be suitable under some operating conditions such as food processing. It is found that thermal conductivity of the material slightly increases the effect of the Re number on Nusselt (Nu) number and the thermal conductivity is becoming very important parameter while investigating the effect of tube diameter on Nu number. Similarly the effect of fin length and fin thickness is also affected by fin material. A new correlation is proposed to predict Nu number includes the effect of all these parameters.

___

  • Ay H., Jang J. Y., Yeh J. N., 2002, Local Heat Transfer Measurements of Plate Finned-Tube Heat Exchangers by Infrared Thermography, Int J Heat Mass Transfer, 45, 4069- 4078.
  • Borrajo-Peláez R., Ortega-Casanova J., Cejudo-López J. M., 2010, A Three-Dimensional Numerical Study and Comparison Between the Air Side Model and the Air/Water Side Model of a Plain Fin-and-Tube Heat Exchanger, Appl Therm Engineering, 30, 1608 - 1615.
  • Cevallos J. G., Bergles A. E., Cohen A. B., Rodgers P., Gupta A. K., 2012, Polymer Heat Exchangers-History, Opportunities, and Challenges, Heat Trans Eng, 13, 1075- 1093.
  • Chen L., Li Z., Guo Z. Y., 2009, Experimental Investigation of Plastic Finned-Tube Heat Exchangers, with Emphasis on Material Thermal Conductivity, Exp Therm Fluid Sci, 33, 922 - 928.
  • Chiu C. H., Chen C. K., 2002, A Decomposition Method for Solving the Convective Longitudinal Fins with Variable Thermal Conductivity, Int J Heat Mass Transfer, 45, 2067 - 2075.
  • Choi J. M., Kim Y., Lee M., Kim Y., 2010, Air Side Heat Transfer Coefficients of Discrete Plate Finned-Tube Heat Exchangers with Large Fin Pitch, Appl Therm Engineering, 30, 174-180.
  • Du X., Feng L., Yang Y., Yang L., 2013, Experimental Study on Heat Transfer Enhancement of Wavy Finned Flat Tube with Longitudinal Vortex Generators, App Therm Eng, 50, 55 - 62.
  • Du X., Zeng M., Wang Q., Dong Z., 2014, Experimental Investigation of Heat Transfer and Resistance Characteristics of a Finned Oval-Tube Heat Exchanger with Different Air Inlet Angles, Heat Tran Eng,35,703-710.
  • Gong J., Min C., Qi C., Wang E., Tian L., 2013, Numerical Simulation of Flow and Heat Transfer Characteristics in Wavy Fin-and-Tube Heat Exchanger with Combined Longitudinal Vortex Generators, Int Com Heat Mass Transfer, 43, 53 - 56.
  • Halici F. and Taymaz I., 2006, Experimental Study of the Airside Performance of Tube Row Spacing in Finned Tube Heat Exchangers, Heat Mass Transfer, 42, 817-822.
  • He Y. A., Chu P., Tao W. Q., Zhang Y. W., Xie T., 2013, Analysis of Heat Transfer and Pressure Drop for Fin-and- Tube Heat Exchangers with Rectangular Winglet-Type Vortex Generators, App Therm Eng, 61, 770 - 783.
  • He Y. L., Tao W. Q., Song F. Q., Zhang W., 2005, ThreeDimensional Numerical Study of Heat Transfer Characteristics of Plain Plate Fin-and-Tube Heat Exchangers from View Point of Field Synergy Principle, Int J Heat Fluid Flow, 26, 459 - 473.
  • Huang C. H., Yuan I. C., Ay H., 2009, An Experimental Study in Determining the Local Heat Transfer Coefficients for the Plate Finned-Tube Heat Exchangers, Int J Heat Mass Transfer, 52, 4883 - 4893.
  • Incropera F. P. and Dewitt D. P., 2002, Fundamentals of Heat and Mass Transfer, Wiley, New York.
  • Iniguez J. C., Wu A., Dugast F., Vega A.P., 2015 Numerically-Based Parametric Analysis of Plain Fin and Tube Compact Heat Exchangers, App Therm Eng, 86, 1 -13.
  • Juan D. and Qin Q. Z., 2014, Multi-Objective Optimization of a Plain Fin-and-Tube Heat Exchanger Using Genetic Algorithm, Therm Eng, 61, 309 - 317.
  • Karthik P., Khan S. I. L. A., Narasingamurthi K., Ramalingam V., 2015. Experimental and Numerical Investigation of a Louvered Fin and Elliptical Tube Compact Heat Exchanger. Therm Sci, 19, 679 - 692.
  • Kays W. M. and London A. L., 1984, Compact heat exchangers. McGraw-Hill, New York.
  • Kim Y. and Kim Y., 2005, Heat Transfer Characteristics of Flat Plate Finned-Tube Heat Exchangers with Large Fin Pitch, Int J Refrigeration, 28, 851-858.
  • Kuvvet, K. and Yavuz, T., 2011, The Effect of Fin Pitch on Heat Transfer and Fluid Flow Characteristics in The Entrance Region of a Finned Concentric Passage, (Isı Bilimi ve Tekniği Dergisi) J. of Thermal Science and Technology, 31, 2, 109-122.
  • Lizardi J. J., Trevin C., Me´ndez F., 2004, The Influence of the Variable Thermal Conductivity of a Vertical Fin on a Laminar-Film Condensation Process, Heat and Mass Transfer, 40, 383 - 391.
  • Meng L. and Jacobi A. M., 2011, Optimization of Polymer Tube-Bundle Heat Exchangers Using a Genetic Algorithm, Proc of ASME International Mechanical Engineering Congress & Exposition, Denver, 621- 631.
  • Özen, D.N. and Altınışık, K., 2012, Investigation of Thermal Performance of Finned Tube Evaporator under Dry Conditions, (Isı Bilimi ve Tekniği Dergisi) J. of Thermal Science and Technology, 32, 2, 145-150.
  • Romero-Méndez R., Sen M., Yang K. T., McClain R., 2000, Effect of Fin Spacing on Convection in a Plate Fin and Tube Heat Exchanger, Int J Heat Mass Transfer, 43, 39 - 51.
  • Sheu T. W. H. and Tsai S. F., 1999, A Comparison Study on Fin Surfaces in Finned-Tube Heat Exchangers, Int J Numer Methods Heat Fluid Flow, 9, 92 - 106.
  • Sun L. and Zhang A.L., 2014, Evaluation of Elliptical Finned-Tube Heat Exchanger Performance Using CFD and Response Surface Methodology, Int J Therm Sci, 75, 45 - 53.
  • Tao W. Q., Cheng Y. P., Lee T. S., 2007, 3D Numerical Simulation on Fluid Flow and Heat Transfer Characteristics in Multistage Heat Exchanger with Slit Fins, Heat Mass Transfer, 44, 125 - 136.
  • Vandoormaal,J.P. and Raithby, G.D., 1984, Enhancements of the Simple Method for Predicting Incompressible Fluid Flows, Numerical Heat Transfer, 7, 147-163.
  • Wais P., 2014, Fin-Tube Heat Exchanger Performance for Different Louver Angles, Mechanika, 86, 115 - 122.
  • Wang C. C. and Chi K. Y., 2000a, Heat Transfer and Friction Characteristics of Plain Fin-and-Tube Heat Exchangers, Part I: New Experimental Data, Int J Heat Mass Transfer, 43, 2681-2691.
  • Wang C. C. and Chi K. Y., 2000b, Heat Transfer and Friction Characteristics of Plain Fin-and-Tube Heat Exchangers, Part II: Correlation, Int J Heat Mass Transfer, 43, 2693-2700.
  • Wang C. C., Chen K. Y., Liaw J. S., Tseng C. Y., 2015, An Experimental Study of the Air-Side Performance of Fin-andTube Heat Exchangers Having Plain, Louver, and SemiDimple Vortex Generator Configuration, Int J Heat Mass Transfer, 80, 281 - 287.
  • Webb R. L., 1983, Plate fin heat exchangers, In: Schlünder EU (ed) Heat Exchanger Design Handbook, Hemisphere, Washington.
  • Xie G., Wang Q., Sunden B., 2009, Parametric Study and Multiple Correlations on Air-Side Heat Transfer and Friction Characteristics of Fin-and-Tube Heat Exchangers with Large Number of Large-Diameter Tube Rows, Appl Therm Engineering, 29, 1 - 16.
  • Yaici W., Ghorab M., Entchev E., 2014, 3D CFD Analysis of the Effect of Inlet Air Flow Maldistribution on the Fluid Flow and Heat Transfer Performances of Plate-Fin-andTube Laminar Heat Exchangers, Int J Heat Mass Transfer, 74, 490 - 500.
  • Yan W.M. and Sheen P.J., 2000, Heat Transfer and Friction Characteristics of Fin-And-Tube Heat Exchangers, Int J Heat Mass Transfer, 43, 1651-1659.
  • Zhou F., Hansen N. E., Geb D. J., Catton I., 2011, Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Finand-Tube Heat Exchangers, J Heat Trans, 133, 1-9.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ