Dalgalı yüzeyli levhalar arasında taşınımla ısı geçişinin incelenmesi

Dalgalı yüzeyli kanallar, taşımınla ısı geçişini iyileştirmek amacıyla ısı geçişi sağlayan düzeneklerde yaygın olarak kullanılmaktadır. Bu çalışmada, dalgalı yüzeyli levhalar arasında tam gelişmiş hava akışı için taşımınla ısı geçişi deneysel, sayısal ve yapay sinir ağları yöntemi ile incelenmiştir. Deneysel ve sayısal olarak elde edilen sonuçlar, yapay sinir ağları yöntemiyle elde edilenlerle uyum göstermektedir.

Investigation of convective heat transfer in corrugated channels

To enhance convective heat transfer, corrugated channels are often utilized in heat transfer equipment. In this study, convective heat transfer characteristics were investigated experimentally,numerically and by using the artificial neural network method for fully developed air flowing in these channels. The results evaluated by all of the aforementioned methods are in good agreement.

___

  • Asako, Y. and Faghri, M., Finite-Volume Solution for Laminar Flow and Heat Transfer in a Corrugated Duct, Trans. ASME J. Heat Transfer, 109, 627-634, 1987
  • Bayraktar, I., Islamoglu, Y., Parmaksizoglu,C. and Durmaz, T., Heat Transfer Characteristics Between Corrugated Plates, 36th AIAA Thermophysics Conference, Orlando, Florida, pp. 4201-4210, 2003.
  • Elmas, Ç., Yapay Sinir Ağları, Seçkin Yayıncılık, Ankara, 2003.
  • Incropera, F. and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 4. Basımdan çeviri, Çevirenler: Derbentli, T., Genceli, O., Güngör, A., Hepbaşlı, A., İlken, Z., Özbalta, N., Özgüç, F., Parmaksızoğlu, C. ve Uralcan, Y., Isı ve Kütle Geçişinin Temelleri, Literatür, İstanbul, 2001.
  • Islamoglu, Y. and Parmaksizoglu C., The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel, Applied Thermal Engineering, 23, 979-987, 2003.
  • Islamoglu,Y. and Parmaksizoglu, C., Numerical investigation of convective heat transfer and pressure drop in a corrugated heat exchanger channel, Applied Thermal Engineering, 24,141-147, 2003
  • Islamoglu, Y. and Kurt, A., Heat transfer analysis using ANNs with experimental data for air flowing in corrugated channels, Int. J. Heat and Mass Transfer, 47, 1361-1365, 2004.
  • Islamoglu, Y., A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger—use of an artificial neural network model, Applied Thermal Engineering; 23, 243-249, 2003.
  • Kuppan, T., Heat Exchanger Design Handbook, Marcel Dekker Inc., New York, 2000.
  • Launder, B.E. and Spalding, D.B.,The Numerical Computation of Turbulence Flows, Comp. Method in Applied Mechanics and Engineering, 3, 296-289, 1974.
  • Liang, C.Y. and Yang, W., Heat Transfer and Friction Loss Performance of Perforated Heat Exchanger Surfaces, Trans.ASME, J.Heat Transfer, 9-15, 1975.
  • Oyokawa, K., Shinzato, T. and Mabuchi, I., The Effect of the Channel Width on Heat-Transfer Augmentation in a Sinusoidal Wave Channel, JSME Int. J., Series II, 32, 403-410, 1989.
  • Sen, M. and Yang, K.T., Applications of Artificial Neural Networks and Genetic Algorithms in Thermal Engineering, The CRC Handbook of Thermal Engineering, edited by Kreith, F., CRC Press, Boca Raton, FL, 2000.
  • Shah,, R.K., Subbarao, E.C. and Mashelkar, R.A., Heat Transfer Equipment Design, Hemisphere Publishing Coorporation, Washington, 1988.
  • Sparrow, E.M. and Comb, J.W., Effect of Interwall Spacing and Fluid Flow Inlet Conditions on a Corrugated-Wall Heat Exchanger, In.J. Heat and Mass Transfer, 26, 993-1005, 1983.
  • Webb, R.L., Principles of Enhanced Heat Transfer, John Wiley & Sons, Inc., New York, 1994.
  • Yuan, Z., Tao, W. and Wang, Q., Numerical Prediction for Laminar Forced Covection Heat Transfer in Parallel-Plate Channels with Streamwise-Periodic Rod Disturbances, Int. J. Numerical Methods in Fluids, 28, 1371-1388, 1998.