BİR RADYANT DUVAR PANEL SİSTEMİNİN TERMAL KOMFOR PERFORMANSININ DENEYSEL OLARAK İNCELENMESİ: FARKLI ISITMA DUVAR KONFİGÜRASYONLARININ KARŞILAŞTIRILMASI

:Isıl konfor ve enerji tasarrufu açısından birçok avantaj sağlayan radyan ısıtma, bir mekânın ısıtılmasında kendini kanıtlamış bir teknolojidir. Bu nedenle, bu sistemlerin kullanımı her geçen gün artmakta ve araştırmacılar tarafından daha fazla incelenmektedir. Bu çalışmada, gerçek ölçekli bir test sistemi kullanılarak farklı panel yerleşimleri deneysel olarak ilgili standartlara göre incelenmiştir. Çalışmanın sonucuna göre; radyan panellerin yerleşim konfigürasyonunun değişmesiyle ısıl konforun da değiştiği açığa kavuşmuştur. Amaç, farklı duvar tipi radyan ısıtma paneli yerleşim konfigürasyonlarına değişik giriş suyu sıcaklıkları uygulandığı zaman ısıl konforun nasıl etkilendiğini anlamaktır. Dikey hava sıcaklığı farkları ve ortalama radyan sıcaklıklar incelenmiştir. 0,1 m ve 1,7 m deki ortalama hava sıcaklığı farkları üç farklı yerleşim durumu için sırasıyla 0,14 °C, 1,11 °C ve 0,73 °C olarak bulunmuştur. Sonuçlar radyan panellerin farklı duvarlara monte edilmesinin hem ısıl konforu hem de ısıtma performansını etkilediğini göstermiştir. Deneylere göre; panellerin üzerinde cam bulunan dış duvara yerleştirildiği ilk durum diğer yerleşim durumlarından daha iyi performans göstermektedir

EXPERIMENTAL EXAMINATION OF THERMAL COMFORT PERFORMANCE OF A RADIANT WALL PANEL SYSTEM: COMPARISON BETWEEN DIFFERENT HEATING WALL CONFIGURATIONS

Radiant heating is a proven technology in space heating which offers many advantages to thermal comfort and energyconservation. For this reason, the usage of these systems is increasing from day to day and it has been widely investigated by theresearchers. Different panel locations were examined experimentally with through the usage of a real size test chamber inaccordance with pre-determined standards in this study. As a result of the research, it was become apparent that thermal comfortaspects in a room vary with the variation in placement configurations of the radiant panels. The goal was to estimate how thermalcomfort is affected when varying inlet water temperatures are applied to different radiant wall heating panels’ placementconfigurations. Vertical air temperature differences and mean radiant temperatures were investigated. Average vertical airtemperatures of the locations 0.1 m and 1.7 m were found 0.14 °C, 1.11 °C and 0.73 °C respectively. The results confirm that themounting radiant wall panels to different walls affect both thermal comfort and heating performance. Based on the experiments,the first case which is located on an exterior wall containing a window produces better results than the others.

___

  • Zhang, D., Cai, N. and Wang, Z., 2013, Experimental and numerical analysis of lightweight radiant floor heating system, Energy and Buildings, vol. 61, pp. 260–266.
  • TSE 825,1972, Thermal insulation requirements for buildings, Turkish Standards, Ankara, Turkey, 2008.
  • Tian, Z., Yin, X., Ding, Y. and Zhang, C., 2012, Research on the actual cooling performance of ceiling radiant panel, Energy and Buildings, vol. 47, pp. 636–642.
  • Sevilgen G. and Kilic, M., 2011, Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators, Energy and Buildings, vol. 43, pp. 137-146.
  • Saelens, D., Parys, W. and Baetens, R., 2011, Energy and comfort performance of thermally activated building systems including occupant behaviour, Building and Environment, vol. 46, no. 4, pp. 835–848.
  • Olesen, B. , 2008, Radiant floor cooling systems, ASHRAE Journal, vol. 50, no. 9, pp. 16–22.
  • Okamoto, S., Kitora, H., Yamaguchi, H. and Oka, T., 2010, A simplified calculation method for estimating heat flux from ceiling radiant panels, Energy and Buildings, vol. 42, no. 1, pp. 29-33.
  • Nagano, K. and Mochida, T., 2004, Experiments on thermal environmental design of ceiling radiant cooling for supine human subjects, Building and Environment, vol. 39, no. 3, pp. 267–75.
  • Myhren, J.A. and Holmberg, S., 2008, Flow patterns and thermal comfort in a room with panel, floor and wall heating, Energy and Building, vol. 40, no. 4, pp. 524-536.
  • Miriel, J., Serres, L. and Trombe, A., 2002, Radiant ceiling panel heating-cooling systems: Experimental and simulated study of the performances, thermal comfort and energy consumptions, Applied Thermal Engineering, vol. 22, pp. 1861–1873.
  • Memon, R.A., Chirarattananon, S. and Vangtook, P., 2008, Thermal comfort assessment and application of radiant cooling: A case study, Building and Environment, vol. 43, no. 7, pp. 1185–1196.
  • Koca, A., Gemici, Z., Topacoglu, Y., Cetin, G., Acet, R.C. and Kanbur, B.B., 2014, Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room, Energy and Building, vol. 82, pp. 211-221.
  • Kitawaga, K., Komodo, N., Hayano, H. and Tanabe, S., 1999, Effect of humidity and small air movement on thermal comfort under a radiant cooling ceiling by subjective experiments, Energy and Building, vol. 30, no. 2, pp. 185–93.
  • ISO Guide, 1995, Guide to the Expression of Uncertainty in Measurement, first edition, 1993, corrected and reprinted 1995, International Organization for Standardization, Geneva, Switzerland.
  • ISO 7726, 2002, Ergonomics of the thermal environment - instruments for measuring physical quantities, International Standardization Organization, Geneva, Switzerland.
  • Imanari, T., Omori, T. and Bogaki, K., 1999, Thermal comfort and energy consumption of the radiant ceiling panel system: Comparison with the conventional all-air system, Energy and Buildings, vol. 30, no. 2, pp. 167-175.
  • Ghaddar, N., Salam, M. and Ghali, K., 2006, Steady thermal comfort by radiant heat transfer: the impact of the heater position, Heat Transfer Engineering, vol. 27, no. 7, pp. 29-40.
  • Fonseca, N., 2011, Experimental study of thermal condition in a room with hydronic cooling radiant surfaces, International Journal of Refrigeration, vol. 4, pp. 686-695.
  • Fonseca Diaz N., 2011, Experimental study of hydronic panels system and its environment, Energy Conversion and Management, vol. 52, no. 1, pp. 770–780.
  • EN ISO 7730, 1994, Moderate thermal environments - determination of the PMV and PPD indices and specification of the conditions for thermal comfort, International Organization for Standardisation, Geneva, Switzerland. Fanger, P.O., Thermal comfort, McGraw-Hill, New York.
  • EN 15377-1, 2008, Heating Systems in Buildings – Design of Embedded Water Based Surface Heating and Cooling Systems – Part 1: Determination of the Design Heating and Cooling Capacity.
  • Djuric, N., Novakovic, V., Holst, J. and Mitrovic, Z., 2007, Optimization of energy consumption in buildings with hydronic heating systems considering thermal comfort by use of computer-based tools, Energy and Buildings, vol. 39, no. 4, pp. 471-477.
  • Cholewa, T., Rosinski, M., Spik, Z., Dudzinska, M.R. and Siuta-Olcha, A., 2013, On the heat transfer coefficient between heated/cooled radiant floor and room, Energy and Buildings, vol. 66, pp. 599-606.
  • Causone, F., Corgnati, S.P., Filippi, M., and Olesen, W.B., 2009, Experimental evaluation of heat transfer coefficients between radiant ceiling and room, Energy and Buildings, vol. 41, no. 6, pp. 622–628.
  • BS EN 12831, 2003, Heating systems in buildings - Method for calculation of the design heat load. Catalina, T., Virgone, J. and Kuznik, F., 2009, Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling, Building and Environment, vol. 44, no. 8, pp. 1740-1750.
  • ASHRAE, 2008, ASHRAE Handbook - Heating, Ventilating, and Air-Conditioning Systems and Equipment (I-P Edition) - 6. Panel Heating and Cooling, American Society of Heating, Refrigerating and AirConditioning Engineers, Inc, Atlanta, GA.
  • ANSI/ASHRAE, 2013, Standard 55, Thermal environmental conditions for human occupancy, American Society of Heating, Refrigerating, and AirConditioning Engineers, Inc, Atlanta, GA.
  • Andrés-Chicote, M., Tejero-González, A., VelascoGómez, E. and Rey-Martínez, F.J., 2012, Experimental study on the cooling capacity of a radiant cooled ceiling system, Energy and Buildings, vol. 54, pp. 207–214.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ
Sayıdaki Diğer Makaleler

DİZEL YAKITINA ETANOL VE DİETİL ETER KATILMASININ MOTOR PERFORMANSI VE EMİSYONLARA ETKİLERİNİN DENEYSEL İNCELENMESİ

İsmet SEZER

DÜŞEY DUVARLARI KISMİ ISITILAN VE SOĞUTULAN DUVARLAR İÇERİSİNDEKİ SUYUN 4°C CİVARINDAKİ DOĞAL TAŞINIMI

Mehmet Akif EZAN, Mustafa KALFA

KANAT PROFİLLERİNİN DİKEY EKSENLİ BİR RÜZGÂR TÜRBİNİ PERFORMANSINA ETKİSİNİN SAYISAL İNCELENMESİ

Toygun DAGDEVİR, Nafiz KAHRAMAN, Orhan AKANSU

BİR RADYANT DUVAR PANEL SİSTEMİNİN TERMAL KOMFOR PERFORMANSININ DENEYSEL OLARAK İNCELENMESİ: FARKLI ISITMA DUVAR KONFİGÜRASYONLARININ KARŞILAŞTIRILMASI

Zafer GEMİCİ

EKSENEL GAZ TÜRBİNLERİNDE KANAT UCU AKIŞININ SAYISAL İNCELENMESİ: KANAT UCU BOŞLUĞUNUN VE BAĞIL HAREKETİN ETKİSİ Hidir MARAL

Levent Ali KAVURMACIOGLU, Cem Berk SENEL

OLUK TASARIMINDA ÜRETİMSEL KISITLARIN ETKİSİ VE BUNUN ISI BORULARININ ISI TAŞIMA KAPASİTESİNİ BELİRLEMEDE KULLANILAN BİR ALGORTİMAYA UYGULANIŞI

İlhami HORUZ, Ahmet Bilge UYGUR, Cem ÖMÜR

GAZ TÜRBİNLİ KOJENERASYON TESİSLERİNİN PERFORMANS ANALİZLERİ

İlhan Tekin ÖZTÜRK, Rabi KARAALİ

ÇAMUR HALİNDEKİ SERAMİK HAMMADDELERİNİN KURUTMA KİNETİĞİNİN İNCELENMESİ

Özden AĞRA, Alişan GÖNÜL

ÇEVRE ŞARTLARININ GAZ TURBİNLİ KOJENERASYON ÇEVRİMLERİNİN PERFORMANSI ÜZERİNE ETKİLERİ

İlhan Tekin ÖZTÜRK, Rabi KARAALİ

KÜRESEL VE ÇOK DELİKLİ BARUTLAR İÇİN İÇ BALİSTİK VE GEÇİŞ BALİSTİĞİ PROBLEMLERİNİN ÇÖZÜMÜ VE DENEYSEL SONUÇLAR İLE KARŞILAŞTIRILMASI

Mehmet AKÇAY