Thermodynamic Properties of Selected Bicyclic Terpenes and Related Substances by Gas Chromatography and Group Contributions

Thermodynamic Properties of Selected Bicyclic Terpenes and Related Substances by Gas Chromatography and Group Contributions

Terpene compounds in the lower layer of the atmosphere can contribute to environmental problems through the formation of particulate material known as secondary organic aerosol (SOA). A clear understanding of the formation and composition of these particles hinges on reliable thermodynamic data. Quick estimation of these physical properties is highly desired. While experimental methods require significant resources and time, the prediction of pure-component properties through group contributions is easily applicable and straightforward. The present study compares the experimental enthalpies of vaporization at 298.15 K for bicyclic terpenes and related substances derived from the gas chromatography technique with estimated values provided by three group contribution methods. A new group contribution model specifically designed for terpene compounds is introduced. Furthermore, this study reveals previously unreported values in the literature for the enthalpy of vaporization at 298.15 K and the normal boiling temperature of Thymol methyl ether, Fenchyl alcohol, and Bicyclo [4.1.0] heptane-7-carboxylic acid.

___

  • P.M. Dewick, “The biosynthesis of C5-C25 terpenoid compounds,” Nat. Prod. Rep., 19, 181-222, 2002.
  • F. Fehsenfeld, J. Calvert, R. Fall, P. Goldan, A.B. Guenther, C.N. Hewitt, B. Lamb, S. Liu, M. Trainer, H. Westbert, P. Zimmerman, “Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry,” Glob. Biogeochem. Cycles, 6, 389-430, 1992.
  • A.H. Goldstein, I.E. Galbally, “Known and Unexplored Organic Constituents in the Earth's Atmosphere,” Environ. Sci. Technol., 41, 1514-1521, 2007.
  • Y. Yokouchi, Y. Ambe, “Aerosols formed from the chemical reaction of monoterpenes and ozone,” Atmos. Environ., 19, 1271-1276, 1985.
  • S.N. Pandis, A.S. Wexler, J.H. Seinfeld. “Secondary organic aerosol formation and transport — II. Predicting the ambient secondary organic aerosol size distribution,” Atmos. Environ., 15, 2403-2416, 1993.
  • M. Keller, M. Lerdau, “Isoprene emission from tropical forest canopy leaves,” Glob. Biogeochem. Cycles, 13, 19-29, 1999.
  • M. Kanakidou, J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L Myhre, K. Tsigaridis, E. Vignati, E.G. Stephanou, J. Wilson, “Organic aerosol and global climate modelling: a review,” Atmospheric Chem. Phys., 5, 1053-1123, 2005.
  • D.W. Dockery, C.A. Pope, X.P. Xu, J.D. Spengler, J.H. Ware, M.E. Fay, B.G. Ferris, F.E. Speizer, “An association between air pollution and mortality in six U.S. cities,” N. Engl. J. Med., 329, 1753-1759, 1993.
  • D. T. Tingey, M. Manning, L.C Grothaus, W.F. Burns, “Influence of light and temperature on monoterpene emission rates from slash pine,” Plant Physiol., 65, 797-801, 1980.
  • A.B. Guenther, R.K. Monson, R. Fall, “Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development,” J. Geophys. Res., 96, 10799-10808, 1991.
  • Ü. Niinemets, R. K. Monson, A. Arneth, P. Ciccioli, J. Kesselmeier, U. Kuhn, S.M. Noe, J. Peñuelas, M. Staudt, “The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling,” Biogeosciences, 7, 1809-1832, 2010.
  • V. Stejfa, M. Fulem, K. Ruzicka, C. Cervinka, M.A.A. Rocha, L.M.N.B.F. Santos, B. Schröder, “Thermodynamic study of selected monoterpenes,” J. Chem. Thermodyn., 60, 117–125, 2013.
  • V. Majer, M. Svoboda, J. Pick. Heats of Vaporizations of Fluids, New York: Elsevier, 1989.
  • M. Hoskovec, D. Grygarová, J. Cvačka, L. Streinz, J. Zima, S.P. Verevkin, B. Koutek, “Determining the vapour pressures of plant volatiles from gas chromatographic retention,” J. Chromatogr. A, 1083, 161-172, 2005.
  • C.E.L. Oliveira, M.A. Cremasco, “Determination of the vapor pressure of Lippia gracilis Schum essential oil by thermogravimetric analysis,” Thermochim. Acta, 577, 1-4, 2014.
  • S.F. Donovan, “New method for estimating vapor pressure by the use of gas chromatography,” J. Chromatogr. A, 749, 123-129, 1996.
  • B. Koutek, M. Hoskovec, P. Vrkočová, L. Feltl, “Gas chromatographic determination of vapour pressures of pheromone-like compounds IV. Acetates, a reinvestigation,” J. Chromatogr. A, 759, 93-109, 1997.
  • J.P. O’Connell, R. Gani, P.M. Mathias, G. Maurer, J.D. Olson, P.A. Crafts, “Thermodynamic Property Modeling for Chemical Process and Product Engineering: Some Perspectives,” Ind. Eng. Chem. Res., 48, 4619–4637, 2009.
  • R. Gani, “Group contribution-based property estimation methods: advances and perspectives,” Curr. Opin. Chem. Eng., 23, 184–196, 2019.
  • V. Mann, R. Gani, V. Venkatasubramanian, !Group contribution-based property modeling for chemical product design: A perspective in the AI era,” Fluid Ph. Equilib., 568, 113734, 2023.
  • J.S. Chickos, W.E. Acree, J.F. Liebman, “Estimating phase change and entropies in Computational Thermochemistry: Prediction Estimation of Molecular Thermodynamics,” in K. Irikura, D. Frurip (Eds.), ACS Symposium Series n. 677, American Chemistry Society, Washington DC, 63–91, 1998.
  • K. G. Joback, R. C. Reid, “Estimation of Pure-Component Properties From Group-Contributions,” Chem. Eng. Commun, 57, 233-243, 1987.
  • K. Růžička, V. Majer, “Simultaneous treatment of vapor pressures and related thermal data between the triple and normal boiling temperatures for n -alkanes C5 – C20”, J. Phys. Chem. Ref. Data, 23, 1-39, 1994.
  • D.R. Lide. CRC Handbook of Chemistry and Physics, 84 ed., CRC Press, 2004.
  • National Institute of Standards and Technology. Chemistry Web Book. NIST Standard Reference Database Number 69. 2011.[Online]. Available: https://webbook.nist.gov/chemistry/name-ser/. (accessed Jan. 20, 2023).
  • W. V. Steele, R. D. Chirico, S. E. Knipmeyer, A. Nguyen, N. K. Smith, “Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Butyl Vinyl Ether, 1,2-Dimethoxyethane, Methyl Glycolate, Bicyclo [2.2.1]hept-2-ene, 5-Vinylbicyclo[2.2.1]hept-2-ene, trans-Azobenzene, Butyl Acrylate, Di-tert-butyl Ether, and Hexane-1,6-diol,” J. Chem. Eng. Data, 41, 1285–1302, 1996.
  • W. Acree Jr., J.S. Chickos, “Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 − C10,” J. Phys. Chem. Ref. Data. 45, 2016.
  • N.J. Nilsson, “Introduction to machine learning: an early draft of a proposed textbook,” Robotics Laboratory, Department of Computer Science. Stanford, 2005.
  • A.S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin, R. Gani, “Group-contribution (GC) based estimation of properties of pure components: improved property estimation and uncertainty analysis,” Fluid Phase Equilib., 321, 25–43, 2012.