Phase Transition Thermodynamic Properties Of 2-Methylquinoline, 2-Chloroquinoline And 2-Phenylquinoline

Phase Transition Thermodynamic Properties Of 2-Methylquinoline, 2-Chloroquinoline And 2-Phenylquinoline

Derivatives of quinoline are widely utilized in both industries and in healthcare. To understand the quinolines' quality and stability in usage, it is crucial to study their phase transition chemical thermodynamic characteristics. In this work, the phase transition thermodynamic characters of 2-methylquinoline (quinaldine), 2-chloroquinoline, and 2-phenylquinoline were investigated. Moreover, the sublimation/vaporization enthalpy of the compounds were determined the solution calorimetry-additivity scheme approach at 298.15 K. The solution calorimetry was applied to measure solution enthalpies of the compounds in benzene solvent at 298.15 K. While, the solvation enthalpy of the compounds were calculated additivity scheme approach. In addition, the transpiration method applied to estimate vapor pressure to temperature dependency to 2-Chloroquinoline. In consequence, the vapor pressure values with respect to temperature variation was determined to 2-Chloroquinoline compound for the first time. As a result, the phase transition chemical thermodynamic properties; enthalpy, entropy, and Gibbs energy for 2-methylquinoline, 2-chloroquinoline and 2-phenylquinoline were determined from crystalline/liquid to gas phase. Furthermore, in this work the thermochemical characteristics values of the studied compounds exhibited higher accuracy to those in literature data. Finally, the phase transition thermodynamically studied on 2-position of the quinoline compound, where it substituted to methyl, chloro and phenyl groups.

___

  • K. Li, T. Zou, Y. Chen, X. Guan, and C. Che, “Pincer‐Type Platinum (II) Complexes Containing N‐Heterocyclic Carbene (NHC) Ligand: Structures, Photophysical and Anion‐Binding Properties, and Anticancer Activities,” Chem. Eur. J., vol. 21, no. 20, pp. 7441–7453, 2015, doi: 10.1002/chem.201406453.
  • M. Islamuddin, O. Afzal, W. H. Khan, M. Hisamuddin, A. S. A. Altamimi, I. Husain, K. Kato, M. A. Alamri, and S. Parveen, “Inhibition of Chikungunya Virus Infection by 4-Hydroxy-1-Methyl-3-(3-morpholinopropanoyl)quinoline-2(1 H)-one (QVIR) Targeting nsP2 and E2 Proteins,” ACS Omega, vol. 6, no. 14, pp. 9791–9803, 2021, doi: 10.1021/acsomega.1c00447.
  • R. Pingaew, S. Prachayasittikul, and S. Ruchirawat, “Synthesis, Cytotoxic and Antimalarial Activities of Benzoyl Thiosemicarbazone Analogs of Isoquinoline and Related Compounds,” Molecules , vol. 15, no. 2. 2010. doi: 10.3390/molecules15020988.
  • S. M. A. Hussaini, “Therapeutic significance of quinolines: a patent review (2013-2015),” Expert Opin. Ther. Pat., vol. 26, no. 10, pp. 1201–1221, Oct. 2016, doi: 10.1080/13543776.2016.1216545.
  • A. A. Altaf, A. Shahzad, Z. Gul, N. Rasool, A. Badshah, B. Lal, and E. Khan, “A review on the medicinal importance of pyridine derivatives,” J. Drug Des. Med. Chem, vol. 1, no. 1, pp. 1–11, 2015, [Online]. Available: doi: 10.11648/j.jddmc.20150101.11
  • G. Albrecht, C. Rössiger, J. M. Herr, H. Locke, H. Yanagi, R. Göttlich, and D. Schlettwein, “Optimization of the Substitution Pattern of 1, 3‐Disubstituted Imidazo [1, 5‐a] Pyridines and‐Quinolines for Electro‐Optical Applications,” Phys. status solidi, vol. 257, no. 5, p. 1900677, 2020, doi: 10.1002/pssb.201900677.
  • J. Qian, J. Hu, H. Yoshikawa, J. Zhang, K. Awaga, and C. Zhang, “External‐Template‐Assisted Formation of Octacyanometalate‐Based MV–MnII (M= W, Mo) Bimetallic Coordination Polymers with Magnetic Properties,” Eur. J. Inorg. Chem., vol. 2015, no. 12, pp. 2110–2119, 2015, doi: DOI: 10.1002/ejic.201403223.
  • A. Y. Tam, W. H. Lam, K. M. Wong, N. Zhu, and V. W. Yam, “Luminescent Alkynylplatinum (II) Complexes of 2, 6‐Bis (N‐alkylbenzimidazol‐2′‐yl) pyridine‐Type Ligands with Ready Tunability of the Nature of the Emissive States by Solvent and Electronic Property Modulation,” Chem. Eur. J., vol. 14, no. 15, pp. 4562–4576, 2008, doi: DOI: 10.1002/chem.200701914.
  • S. Günnaz, A. G. Gökçe, and H. Türkmen, “Synthesis of bimetallic complexes bridged by 2,6-bis(benzimidazol-2-yl) pyridine derivatives and their catalytic properties in transfer hydrogenation,” Dalt. Trans., vol. 47, no. 48, pp. 17317–17328, 2018, doi: 10.1039/C8DT03178A.
  • L. M. P. F. Amaral and M. A. V Ribeiro da Silva, “Calorimetric study of bromoacetophenone isomers,” J. Chem. Thermodyn., vol. 78, pp. 254–259, 2014, doi: https://doi.org/10.1016/j.jct.2014.06.028.
  • A. L. R. Silva, Á. Cimas, and M. D. M. C. Ribeiro da Silva, “Energetic study of benzothiazole and two methylbenzothiazole derivatives: Calorimetric and computational approaches,” J. Chem. Thermodyn., vol. 73, pp. 3–11, 2014, doi: https://doi.org/10.1016/j.jct.2013.06.021.
  • S. P. Verevkin and V. N. Emel’yanenko, “Transpiration method: Vapor pressures and enthalpies of vaporization of some low-boiling esters,” Fluid Phase Equilib., vol. 266, no. 1, pp. 64–75, 2008, doi: https://doi.org/10.1016/j.fluid.2008.02.001.
  • A. Delle Site, “The vapor pressure of environmentally significant organic chemicals: a review of methods and data at ambient temperature,” J. Phys. Chem. Ref. Data, vol. 26, no. 1, pp. 157–193, 1997.
  • R. S. Abdullah, “Phase Transition Thermodynamics: Evaporation Enthalpy of 13 Naphthalene Derivatives,” Russ. J. Phys. Chem. A, vol. 97, no. 7, pp. 1361–1367, 2023, doi: 10.1134/S0036024423070245.
  • R. S. Abdullah and B. N. Solomonov, “Sublimation/vaporization and solvation enthalpies of monosubstituted pyridine derivatives,” Chem. Thermodyn. Therm. Anal., vol. 8, p. 100087, Dec. 2022, doi: 10.1016/J.CTTA.2022.100087.
  • R. N. Nagrimanov, A. A. Samatov, T. M. Nasyrova, A. V Buzyurov, T. A. Mukhametzyanov, C. Schick, B. N. Solomonov, and S. P. Verevkin, “Long-chain linear alcohols: Reconciliation of phase transition enthalpies,” J. Chem. Thermodyn., vol. 146, p. 106103, 2020, doi: https://doi.org/10.1016/j.jct.2020.106103.
  • R. N. Nagrimanov, A. A. Samatov, A. V Buzyurov, A. G. Kurshev, M. A. Ziganshin, D. H. Zaitsau, and B. N. Solomonov, “Thermochemical properties of mono- and di-cyano-aromatic compounds at 298.15 K,” Thermochim. Acta, vol. 668, pp. 152–158, 2018, doi: https://doi.org/10.1016/j.tca.2018.07.026.
  • B. N. Solomonov, M. A. Varfolomeev, R. N. Nagrimanov, T. A. Mukhametzyanov, and V. B. Novikov, “Enthalpies of solution, enthalpies of fusion and enthalpies of solvation of polyaromatic hydrocarbons: Instruments for determination of sublimation enthalpy at 298.15K,” Thermochim. Acta, vol. 622, pp. 107–112, 2015, doi: https://doi.org/10.1016/j.tca.2015.10.020.
  • B. N. Solomonov, R. N. Nagrimanov, and T. A. Mukhametzyanov, “Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15K,” Thermochim. Acta, vol. 633, pp. 37–47, 2016, doi: https://doi.org/10.1016/j.tca.2016.03.031.
  • B. N. Solomonov, M. I. Yagofarov, and R. N. Nagrimanov, “Additivity of vaporization enthalpy: Group and molecular contributions exemplified by alkylaromatic compounds and their derivatives,” J. Mol. Liq., vol. 342, p. 117472, 2021, doi: https://doi.org/10.1016/j.molliq.2021.117472.
  • B. N. Solomonov, M. A. Varfolomeev, R. N. Nagrimanov, V. B. Novikov, A. V. Buzyurov, Y. V. Fedorova, and T. A. Mukhametzyanov, “New method for determination of vaporization and sublimation enthalpy of aromatic compounds at 298.15 K using solution calorimetry technique and group-additivity scheme,” Thermochim. Acta, vol. 622, pp. 88–96, 2015, doi: 10.1016/j.tca.2015.09.022.
  • B. N. Solomonov, R. N. Nagrimanov, M. A. Varfolomeev, A. V Buzyurov, and T. A. Mukhametzyanov, “Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: Estimation of sublimation enthalpies at 298.15K,” Thermochim. Acta, vol. 627–629, pp. 77–82, 2016, doi: https://doi.org/10.1016/j.tca.2016.02.001.
  • M. I. Yagofarov, R. N. Nagrimanov, and B. N. Solomonov, “Thermochemistry of phase transitions of aromatic amines: Estimation of the sublimation enthalpy at 298.15K through the fusion enthalpy,” J. Chem. Thermodyn., vol. 113, pp. 301–307, 2017, doi: https://doi.org/10.1016/j.jct.2017.06.017.
  • W. L. F. Armarego and C. L. L. Chai, “Purification of organic chemicals,” Purif. Lab. Chem., vol. 7, pp. 103–554, 2009.
  • H. Li, X. Chen, and F. Guo, “Enthalpy of solution for thiourea in triglycol and water,” Russ. J. Phys. Chem. A, vol. 84, no. 13, pp. 2259–2261, 2010, doi: 10.1134/S0036024410130091.
  • E. V Ivanov, V. K. Abrosimov, and V. I. Smirnov, “Enthalpies of solution of 1,1,3,3-tetramethylurea in normal and branched alkanols (C2–C4) at 298.15K,” J. Chem. Thermodyn., vol. 39, no. 12, pp. 1614–1619, 2007, doi: https://doi.org/10.1016/j.jct.2007.04.008.
  • S. P. Verevkin, S. P. Safronov, A. A. Samarov, and S. V Vostrikov, “Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC),” Appl. Sci., vol. 11, no. 24, 2021, doi: 10.3390/app112411758.
  • A. A. Zhabina, R. N. Nagrimanov, V. N. Emel’yanenko, B. N. Solomonov, and S. P. Verevkin, “Nicotinamides: Evaluation of thermochemical experimental properties,” J. Chem. Thermodyn., vol. 103, pp. 69–75, 2016, doi: https://doi.org/10.1016/j.jct.2016.08.002.
  • R. N. Nagrimanov, D. H. Zaitsau, R. S. Abdullah, A. V Blokhin, and B. N. Solomonov, “Thermochemistry of formation and phase transitions of substituted thiophenes at 298.15 K,” J. Chem. Thermodyn., vol. 186, p. 107123, 2023, doi: https://doi.org/10.1016/j.jct.2023.107123.
  • A. A. Samatov, R. N. Nagrimanov, E. A. Miroshnichenko, and B. N. Solomonov, “Vaporization/sublimation enthalpies of mono- and dimethyl-esters estimated by solution calorimetry method,” Thermochim. Acta, vol. 685, p. 178529, 2020, doi: https://doi.org/10.1016/j.tca.2020.178529.
  • W. Acree Jr and J. S. Chickos, “Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1− C10,” J. Phys. Chem. Ref. Data, vol. 45, no. 3, p. 33101, 2016, doi: 10.1063/1.4948363.
  • S. P. Verevkin, A. Y. Sazonova, V. N. Emel’yanenko, D. H. Zaitsau, M. A. Varfolomeev, B. N. Solomonov, and K. V Zherikova, “Thermochemistry of halogen-substituted methylbenzenes,” J. Chem. Eng. Data, vol. 60, no. 1, pp. 89–103, 2015, doi: doi.org/10.1021/je500784s.
  • B. N. Solomonov, M. A. Varfolomeev, R. N. Nagrimanov, T. A. Mukhametzyanov, and V. B. Novikov, “Enthalpies of solution, enthalpies of fusion and enthalpies of solvation of polyaromatic hydrocarbons: Instruments for determination of sublimation enthalpy at 298.15 K,” Thermochim. Acta, vol. 622, pp. 107–112, 2015, doi: 10.1016/j.tca.2015.10.020.
  • M. A. V. R. da Silva, M. A. R. Matos, and L. M. P. F. Amaral, “Standard molar enthalpies of formation of 2-chloroquinoline, 4-chloroquinoline, 6-chloroquinoline and 4, 7-dichloroquinoline by rotating-bomb calorimetry,” J. Chem. Thermodyn., vol. 38, no. 1, pp. 49–55, 2006, doi: 10.1016/j.jct.2005.03.011.
  • R. D. Chirico and W. V Steele, “Thermodynamic Properties of 2-Methylquinoline and 8-Methylquinoline,” J. Chem. Eng. Data, vol. 50, no. 2, pp. 697–708, Mar. 2005, doi: 10.1021/je049595u.
  • W. Acree Jr and J. S. Chickos, “Phase transition enthalpy measurements of organic and organometallic compounds and ionic liquids. Sublimation, vaporization, and fusion enthalpies from 1880 to 2015. Part 2. C11–C192,” J. Phys. Chem. Ref. Data, vol. 46, no. 1, p. 13104, 2017, doi: 10.1063/1.4948363.
  • M. A. V Ribeiro da Silva and M. A. R. Matos, “Recent work on the thermochemistry of some nitrogen heterocycles,” Pure Appl. Chem., vol. 69, p. 2305, 1997, doi: 10.1351/pac199769112295.
  • S. P. Safronov, S. V. Vostrikov, A. A. Samarov, and S. P. Verevkin, “Reversible storage and release of hydrogen with LOHC: Evaluation of thermochemical data for methyl-quinolines with complementary experimental and computational methods,” Fuel, vol. 317, Jun. 2022, doi: 10.1016/J.FUEL.2022.123501.
  • R. M. Stephenson, Handbook of the thermodynamics of organic compounds. Springer Science & Business Media, 2012.