The Seasonal Behavior of the Characteristic Wave in Low Latitudes
The Seasonal Behavior of the Characteristic Wave in Low Latitudes
This study aims to investigate the magnitude of polarization of characteristic wave (Dz=0), for all seasons by using the real geometry of the Earth’s magnetic field for the selected altitudes (390, 410, 450, 500, 550 and 600 Km) in the equatorial anomaly region at low latitudes (-300S and 300N). The part of imaginary of the characteristic wave having a complex structure in latitudes where equatorial anomaly occurs it has a dramatically resemblance to the change of electron density, and the real part has been similarity showing with the change with latitude of the refractive index for all seasons for 12.00-24.00LT.
___
- [1] Ünal, İ., Şenalp, E. T., Yeşil, A., Tulunay, E., & Tulunay, Y. (2011). Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting. Radio Science, 46(01), 1-10.
- [2] Yeşil, A., & Ünal, İ. (2011). Electromagnetic wave propagation in ionospheric plasma. Behaviour of Electromagnetic Waves in Different Media and Structures, 189.
- [3] Yeşil, A., & Sağır, S. (2019). Updating Conductivity Tensor of Cold and Warm Plasma for Equatorial Ionosphere F2-Region in The Northern Hemisphere. Iranian Journal of Science and Technology, Transactions A: Science, 43(1), 315-320.
- [4] Sağır, S., & Yeşil, A. (2018). The Relation Between the Refractive Index of the Equatorial Ionospheric F2 Region and Long-Term Solar Indices. Wireless Personal Communications, 102(1), 31-40.
- [5] Yesil, A., & Kurt, K. (2018). Calculation of electric field strength in the ionospheric F-region. Thermal Science, 22(Suppl. 1), 159-164.
- [6] Timoçin, E., Yeşil, A., & Ünal, İ. (2014). The effect of the geomagnetic activity to the hourly variations of ionospheric foF2 values at low latitudes. Arabian Journal of Geosciences, 7(10), 4437-4442.
- [7] Swanson, D. G. (2012). Plasma waves. Elsevier.
- [8] Whitten, R.C., Poppoff, I.G. (1971). Fundamentals of Aeoronmy, John Willey and Sons, New York.
- [9] Budden, K.G. (1988). The Propagation of Radio Waves, Cambridge University Press, Cambridge.
- [10] Budden, K. G., & Stott, G. F. (1980). Rays in magnetoionic theory-II. Journal of Atmospheric and Terrestrial Physics, 42(9-10), 791-800.
- [11] Richard, F. (2014) The physics of Plasma, CRC press, New York, 50–140.
- [12] Rishbeth, H. (1973). Physics and chemistry of the ionosphere. Contemporary Physics, 14(3), 229-249.
- [13] Rishbeth, H., & Garriott, O. K. (1969). Introduction to ionospheric physics. Introduction to ionospheric physics.
- [14] Ratcliffe, J.A. (1959). The magneto-ionic Theory and Its applications to the ionosphere, Cambridge at the University Press, London.
- [15] Sağir, S., Yaşar, M., & Atici, R. (2019). The Relationship between Dst, IMF-Bz and Collision Parameters for O++ N 2→ NO++ N Reactive Scattering in the Ionosphere. Geomagnetism and Aeronomy, 59(8), 1003-1008.
- [16] Yaşar, M. (2021). The solar eclipse effect on diffusion processes of O++ O2→ O2++ O reaction for the upper ionosphere over Kharkov. Thermal Science, (00), 7-7.
- [17] Yasar, M. (2021). The Change Of Dıffusıon Processes For O+ + N2 → No+ + N Reactıon In The Ionospherıc F Regıon Durıng The Solar Eclıpse Over Kharkov, Thermal Science, 25 (1), 51-56.
- [18] Yaşar, M., Atıcı, R., & Sağır, S. (2018). The change of the collision parameters of ‘O+ + N2 → NO+ + N’ reaction according to geomagnetic activity days in the ionosphere, MSU J. Sci., 6, 529–532.