Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi

Dünyadaki artan nüfus ile birlikte enerji talebi de aynı eğilimle artmaktadır. Artan enerji talebini karşılamak için fosil yakıtlarının sınırlı olması ve yakılması sonucu çevre sorunlarına neden olmaları, araştırmacıları yenilenebilir enerji kaynaklardan bu talebin karşılanması için motive etmektedir. Biyogaz, yenilenebilir enerji kaynaklarından olup atıkların enerjiye çevrilmesiyle yenilenebilir enerji kaynağı üretmenin yanı sıra atıkların bertaraf edilmesiyle atmosfere salınacak gazların azaltılmasında da katkı sağlamaktadır. Bu çalışmada, biyogaz üretimi için besin kaynağı olarak sığır gübresi kullanılarak anaerobik parçalama (AP) işlemi uygulanmıştır. Mezofilik şartlarda (37oC±1) biyokimyasal metan potansiyeli testi yapılarak, spesifik biyogaz ve metan üretimi 236 ± 15 mL Biyogaz/g VS ve 133 ± 3 mL CH4/g VS olarak elde edilmiştir. Deneysel çalışma sonuçları 2018 yılı Türkiye genelindeki sığır sayısıyla ilişkilendirilerek Türkiye’deki sığır gübresinden biyogaz üretim potansiyeli hesaplanmıştır. Bu potansiyelin elektrik enerjisi üretiminde kullanılmasıyla milyon ton CO2 eşdeğerinde sera gazı emülsiyonundaki azalma belirlenmiştir. Potansiyel bu enerjiyi kömür kullanımı yerine biyogaz kullanılarak üretilmesi durumunda 23,26 milyon ton CO2 eşdeğerinde gazın atmosfere salınımın azaltılacağı ortaya konmuştur. Ayrıca, ARIMA model kullanılarak 2023, 2030 ve 2053 yılları için sığır gübresinden biyogaz üretimi potansiyeli tahminlemesi yapılmıştır. ARIMA modeline göre, üretilecek potansiyel biyogazın elektrik enerjisine dönüştürülmesi ve elektrik üretimi için kömür kullanımının azaltılmasıyla birlikte 2023 yılı için 32,62, 2030 yılı için 44,22 ve 2053 yılı için 70,74 milyon ton CO2 eşdeğerinde gaz emülsiyonu salınımında azalma tahmin edilmektedir.

The Potential of Biogas Production as a Biofuel from Cattle Manure in Turkey and Projected Impact on the Reduction of Carbon Emissions for 2030 and 2053

With the increasing population in the world, the energy demand is increasing with the same trend. Researchers have been motived to figure out renewable energy sources to meet this increase energy demand because fossil fuels are limited and they emit harmful gases to the environment during their conversion. Biogas is one of the renewable energy sources and besides producing a renewable energy source by converting waste into energy, it also contributes to reducing the gases that will be released into the atmosphere by the disposal of waste. In this study, the anaerobic digestion (AP) process was applied to cattle manure as a feedstock for biogas production. By performing biochemical methane potential test under mesophilic conditions (37oC ± 1), specific biogas and methane productions were obtained as 236 ± 15 mL Biogas/g VS and 133 ± 3 mL CH4/g VS. Biogas production potential from cattle manure, which is related to the number of cattle in 2018 across Turkey, was calculated by using experimental results. When this potential converted into electricity, a possible decrease of the greenhouse gas emulsion was calculated in million tons of CO2 equivalent. It has been demonstrated that if this potential energy is produced by using biogas instead of coal, the emission of 23.26 million tons of CO2 equivalent gas to the atmosphere would be reduced. In addition, using the ARIMA model, the potential for biogas production from cattle manure was estimated for 2023, 2030, and 2053. According to the ARIMA model, when converting the potential biogas to be produced into electrical energy, and reducing the use of coal for electricity generation, a reduction in gas emulsion emissions of 32.62 million tons of CO2 equivalent for 2023, 44.22 million tons of CO2 equivalent for 2030, and 70.74 million tons of CO2 equivalent for 2053 were estimated.

___

  • 1. The World, B. 2017. "The World Population, Total | Data" [Online]. https://data.worldbank.org/indicator/sp.pop.totl, Son erişim tarihi: 22th Augost 2019.
  • 2. Capuano, L. 2018. "International energy outlook 2018 (IEO2018)".
  • 3. Ren21. 2019. "Renewables 2019 Global Status Report".
  • 4. Nghiem, L. D., Koch, K., Bolzonella, D. ve Drewes, J. E. 2017. "Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities". Renewable and Sustainable Energy Reviews, 72, 354-362.
  • 5. Sawin, J. L., Rutovitz, J. ve Sverrisson, F. 2019. "Renewables 2018 Global Status Report".
  • 6. Eea. 2017. "Climate change, impacts and vulnerability in Europe 2016 An indicator-based report". Copenhagen K Denmark.
  • 7. No, D. 2009. "406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the effort of Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission reduction commitments up to 2020". OJ L, 140.
  • 8. Union, E. 2015. "secure, sustainable, competitive, affordable energy for every European". Dostupno na: https://europa. eu/rapid/press-release_IP-15-4497_en. htm.
  • 9. Holm-Nielsen, J. B., Al Seadi, T. ve Oleskowicz-Popiel, P. 2009. "The future of anaerobic digestion and biogas utilization". Bioresource Technology, 100, 5478-5484.
  • 10. Meyer, A. K. P., Ehimen, E. A. ve Holm-Nielsen, J. B. 2018. "Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production". Biomass and Bioenergy, 111, 154-164.
  • 11. Balat, M. ve Balat, H. 2009. "Biogas as a Renewable Energy Source—A Review". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31, 1280-1293.
  • 12. Taleghani, G. ve Shabani Kia, A. 2005. "Technical–economical analysis of the Saveh biogas power plant". Renewable Energy, 30, 441-446.
  • 13. Connolly, D., Lund, H. ve Mathiesen, B. V. 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union". Renewable and Sustainable Energy Reviews, 60, 1634-1653.
  • 14. Ozturk, M. ve Yuksel, Y. E. 2016. "Energy structure of Turkey for sustainable development". Renewable and Sustainable Energy Reviews, 53, 1259-1272.
  • 15. Özer, B. 2017. "Biogas energy opportunity of Ardahan city of Turkey". Energy, 139, 1144-1152.
  • 16. T.C. Enerji Ve Tabii Kaynaklar, B. 2014. "Türkiye Ulusal Yenilenebilir Enerji Eylem Planı".
  • 17. Tuik. "TUIK - Data Portal" [Online]. Turkish Statistical Institute. https://data.tuik.gov.tr/, Son erişim tarihi: 1st April 2021.
  • 18. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S. ve Janssen, R. 2008. "Biogas Handbook", Denmark, University of Southern Denmark Esbjerg.
  • 19. Atelge, M. R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D. D., Chang, S. W., Atabani, A. E., Al-Muhtaseb, A. H. ve Unalan, S. 2020. "Biogas Production from Organic Waste: Recent Progress and Perspectives". Waste and Biomass Valorization, 11, 1019-1040.
  • 20. Avcioğlu, A. O. ve Türker, U. 2012. "Status and potential of biogas energy from animal wastes in Turkey". Renewable and Sustainable Energy Reviews, 16, 1557-1561.
  • 21. Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H. ve Lee, C. T. 2016. "Potential of biogas production from farm animal waste in Malaysia". Renewable and Sustainable Energy Reviews, 60, 714-723.
  • 22. Noorollahi, Y., Kheirrouz, M., Asl, H. F., Yousefi, H. ve Hajinezhad, A. 2015. "Biogas production potential from livestock manure in Iran". Renewable and Sustainable Energy Reviews, 50, 748-754.
  • 23. Braun, R. 2007. "Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development". Improvement of crop plants for industrial end uses. Springer.
  • 24. Wellinger, A., Murphy, J. D. ve Baxter, D. 2013. "The biogas handbook: science, production and applications", Elsevier.
  • 25. Şenol, H. 2020. "Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves". Bioresource Technology, 300, 122660-122660.
  • 26. Ozturk, S. ve Ozturk, F. 2018. "Forecasting energy consumption of Turkey by Arima model". Journal of Asian Scientific Research, 8, 52.
  • 27. Kendall, M. G. 1971. Time Series Analysis, Forecasting and Control. Wiley Online Library.
  • 28. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. ve Ljung, G. M. 2015. "Time series analysis: forecasting and control", John Wiley & Sons.
  • 29. Deublein, D. ve Steinhauser, A. 2011. "Biogas from waste and renewable resources: an introduction", John Wiley & Sons.
  • 30. Kaparaju, P. ve Rintala, J. 2013. "Generation of heat and power from biogas for stationary applications: boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells". Elsevier.
  • 31. Sabuncu, Ö. 2010. "Technical, economical and environmental analysis of biogas production". Turkish, MSc. Thesis, Hacettepe University, Ankara, Turkey, 34.
  • 32. Cuéllar, A. D. ve Webber, M. E. 2008. "Cow power: the energy and emissions benefits of converting manure to biogas". Environmental Research Letters, 3, 034002.
  • 33. Özer, B., Görgün, E. ve İncecik, S. 2013. "The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030". Energy, 49, 395-403.
  • 34. Kocak, Ç., Tamzok, N. ve Yılmaz, S. "AFŞİN- ELBİSTAN LİNYİT REZERVLERİNİN ELEKTRİK ÜRETİMİ BAKIMINDAN DEĞERİ VE İZLENMESİ GEREKEN POLİTİKALAR".
  • 35. Ozcan, M., Öztürk, S. ve Oguz, Y. 2015. "Potential evaluation of biomass-based energy sources for Turkey". Engineering Science and Technology, an International Journal, 18, 178-184.
  • 36. Karaca, C. ve Gurdil, G. a. K. 2019. "Biogas production potential from animal manure in Samsun province of Turkey". Scientia agriculturae bohemica, 50, 135-140.