Düşük Enlemlerde Karakteristik Dalganın Mevsimsel Davranışı

Bu makale, düşük enlemlerde ekvator anomali bölgesinde seçilen rakımlar (390,410,450,500,550 ve 600 Km) için Dünya'nın manyetik alanının gerçek geometrisini kullanarak tüm mevsimler için karakteristik dalganın (Dz = 0) polarizasyonunun büyüklüğünü araştırmaktadır (- 300S ve 300N). Karakteristik dalganın ekvatoral anomalinin meydana geldiği enlemlerde karmaşık bir yapıya sahip olan hayali kısmı, elektron yoğunluğundaki değişime dramatik bir benzerliğe sahiptir ve gerçek kısmı, 12.00-24.00LT tüm mevsimler için kırılma indisinin enlemiyle değişim ile gösterilen benzerlik olmuştur.

The Seasonal Behavior of the Characteristic Wave in Low Latitudes

This manuscript investigates on the magnitude of polarization of characteristic wave (Dz=0), for all seasons by using the real geometry of the Earth’s magnetic field for the selected altitudes (390,410,450,500,550 and 600 Km) in the equatorial anomaly region at low latitudes (-300S and 300N). The part of imaginary of the characteristic wave having a complex structure in latitudes where equatorial anomaly occurs it has a dramatically resemblance to the change of electron density and the real part has been similarity showing with the change with latitude of the refractive index for all seasons for 12.00-24.00LT.

___

  • [1] Unal, I., Senalp, E.T., Yeşil, A., Tulunay, Y., Tulunay, E., Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting, Radio Science, 46 (01), 1-10, 2011
  • [2] Yesil, A., Unal, I., Electromagnetic Wave Propagation in Ionospheric Plasma, Behaviour of Electromagnetic Waves in Different Media and Structures, 189-212, 2011.
  • [3] Yesil, A., Sagir, S., Updating Conductivity Tensor of Cold and Warm Plasma for Equatorial Ionosphere F2-Region in The Northern Hemisphere, Iran J. Sci. Technol. Trans. A Sci., 43(1), 315-320, 2019.
  • [4] Sagir, S., Yesil. A., The Relation Between the Refractive Index of the Equatorial Ionospheric F2 Region and Long-Term Solar Indices, Wirel. Pers. Commun. 102(1), 31-40, 2018.
  • [5] Timucin, E., Unal, I., Yesil, A., The Effect of the Midlatitude Electron Density Trough on the Ionospheric Conductivities, Iran J. Sci. Technol. Trans. A Sci., 43(1),297-307, 2019.
  • [6] Yesil, A., Kurt, K., Calculation of electric field strength in the ionospheric F-region, Therm. Sci., 22 (Suppl. 1), 159-164, 2019.
  • [7] Timocin, E., Yesil, A., Unal, I., The effect of the geomagnetic activity to the hourly variations of ionospheric for F2 values at low latitudes, Arab. J. Geosci., 7 (10), 4437-4442, 2014.
  • [8] Swanson, D.G., Plasma waves, Academic Press, New York, 1989.
  • [9] Whitten, R.C., Poppoff, I.G., Fundamentals of Aeoronmy, John Willey and Sons, New York, 1971.
  • [10] Budden, K.G., The Propagation of Radio Waves, Cambridge University Press, Cambridge, 1988.
  • [11] Budden, K.G., Stott, G.F., Rays in magneto-ionic theory-II, J. Atmos. Sol.-Terr. Phys., 42, 791–800, 1980.
  • [12] Richard, F. (2014) The physics of Plasma, CRC press, New York, 50–140, 2014.
  • [13] Rishbeth, Henry, Physics and Chemistry of the Ionospheric, Contemp. Phys., 14, 229-240, 1973.
  • [14] Rishbeth, H. ve Garriot, O.K., Introduction to Ionospheric Physics, Academic Pres, New York, 1969.
  • [15] Ratcliffe, J.A., The magneto-ionic Theory and Its applications to The ionosphere, Cambridge at the University Press, London, 1959.