PRODUCTION OF SUGAR ALCOHOLS WITH BIOTECHNOLOGICAL METHODS
PRODUCTION OF SUGAR ALCOHOLS WITH BIOTECHNOLOGICAL METHODS
Sugar alcohols, which are increasingly used in industries worldwide, are sugar substitutes that are
formed by the reduction of sugars. With its low calorie advantage, they have sweetness, such as
non-carcinogenic, low glycemic index and non–insulin resistance, it strengthens the nutritional
properties in food products and improves product properties in terms of technological properties.
It also has positive contributions to health against the increase of diseases such as obesity and
diabetes. Although these compounds are generally produced by catalytic hydrogenation of sugars
in the industry, they are receiving increasing attention as they can be obtained on a microbial basis.
Several interesting metabolic engineering studies were carried out in recent years to improve the
ability of bacteria and yeast to overproduce xylitol, mannitol, and sorbitol. The aim of this review
is to provide information about sugar alcohols and production using biotechnology.
___
- [1] Granström, T. B., Izumori, K. & Leisola,
M. (2007a). A rare sugar xylitol. Part I: the
biochemistry and biosynthesis of xylitol.
Applied microbiology and biotechnology,
74(2), 277-281.
- [2] Schiweck, H. (2003). Bä r A, Vogel R,
Schwarz E, Kunz M: Sugar alcohols: Ullmann’s
Encyclopedia of Industrial Chemistry Wiley–
VCH.
- [3] Bhise, S. & Kaur, A. (2013). Polyols
to improve quality and shelf life of baked
products: A review. International Journal of Advanced Scientific and Technical Research,
1(3), 262-272.
- [4] Zumbe, A., Lee, A. & Storey, D. (2001).
Polyols in confectionery: the route to sugarfree,
reduced sugar and reduced calorie
confectionery. British Journal of Nutrition,
85(S1), S31-S45.
- [5] Akinterinwa, O., Khankal, R. & Cirino,
P. C. (2008). Metabolic engineering for
bioproduction of sugar alcohols. Current
opinion in biotechnology, 19(5), 461-467.
- [6] Silveira, M. & Jonas, R. (2002). The
biotechnological production of sorbitol.
Applied microbiology and biotechnology,
59(4-5), 400-408.
- [7] Blankers, I. (1995). Properties and
applications of lactitol. Food technology
(Chicago), 49(1), 66-68.
- [8] Sych, J., Lacroix, C. & Carrier, M. (1991).
Determination of optimal level of lactitol for
surimi. Journal of food science, 56(2), 285-
290.
- [9] Ünal, D. (2011). Farklı oranlarda laktitol ve
sakkaroz ilavesiyle hazırlanan Tekirdağ peynir
helvalarının bazı özelliklerinin belirlenmesi.
Namık Kemal Üniversitesi.
- [10] Gültekin, F., Öner, M. E., Savaş, H. B.
& Doğan, B. (2017). Tatlandırıcılar, Glikoz
İntoleransı ve Mikrobiyota. Journal of
Biotechnology And Strategic Health Research,
1, 34-38.
- [11] Newman, A. W., Vitez, I. M., Mueller,
R. L., Kiesnowski, C. C., Findlay, W. P.,
Rodriguez, C. & McGeorge, G. (1999).
Sorbitol Analytical profiles of drug substances
and excipients (Vol. 26, pp. 459-502): Elsevier.
- [12] Krüger, C. (1994). Sugar Industrial
chocolate manufacture and use (pp. 25-42):
Springer.
- [13] Güldane, M. (2014). Şeker alkolleri ve
yeni nesil antioksidan etkili tatlandırıcıların
bisküvi kalite özelliklerine etkileri. Pamukkale
Üniversitesi Fen Bilimleri Enstitüsü.
- [14] Munro, I., Shubik, P. & Hall, R. (1998).
Principles for the safety evaluation of
flavouring substances. Food and Chemical
Toxicology, 36(6), 529-540.
- [15] Livesey, G. (2003). Health potential of
polyols as sugar replacers, with emphasis on
low glycaemic properties. Nutrition Research
Reviews, 16(2), 163-191.
- [16] Grembecka, M. (2015). Sugar alcoholstheir
role in the modern world of sweeteners:
a review. European Food Research and
Technology, 241(1), 1-14.
- [17] Commission, E. (2008). Regulation (EC)
No 1333/2008 of the European Parliament and
of the Council of 16 December 2008 on food
additives. Official Journal of the European
Communities, 50, 18.
- [18] Kratzl, K. & Silbernagel, H. (1963). ‹
ber das Vorkommen von Xylit im Speisepilz
Champignon (Psalliota campestris). NW, 50(5), 154-154.
- [19] Makınen, K. K. & Söderllng, E. (1980). A
quantitative study of mannitol, sorbitol, xylitol,
and xylose in wild berries and commercial
fruits. Journal of food science, 45(2), 367-371.
- [20] Chiang, C. & Knight, S. (1959). D-Xylose
metabolism by cell-free extracts of Penicillium
chrysogenum. Biochimica et Biophysica Acta,
35, 454-463.
- [21] Spalt, H. & Niketas, P. (1973). Production
of crystalline xylose: Google Patents.
- [22] Varo, P. (1979). The baking behavior
of different sugars and sugar alcohols
as determined by high pressure liquid
chromatography.
- [23] Gehring, F., Mäkinen, K., Larmas, M. &
Scheinin, A. (1974). Turku sugar studies IV.
An intermediate report on the differentiation
of polysaccharide-forming streptococci (S.
mutans). Acta Odontologica Scandinavica,
32(6), 435-444.
- [24] Pepper, T. & Olinger, P. (1988). Xylitol
in sugar-free confections. Food technology
(Chicago), 42(10), 98-106.
- [25] Voirol, F. (1978). The value of xylitol as
an ingredient in confectionery. Xylitol, 11-20.
- [26] Kadam, K. L., Chin, C. Y. & Brown, L.
W. (2008). Flexible biorefinery for producing
fermentation sugars, lignin and pulp from corn
stover. Journal of industrial microbiology &
biotechnology, 35(5), 331.
- [27] Ko, C.-H., Chiu, P.-C., Yang, C.-L. &
Chang, K.-H. (2008). Xylitol conversion
by fermentation using five yeast strains
and polyelectrolyte-assisted ultrafiltration.
Biotechnology letters, 30(1), 81-86.
- [28] Granström, T. B., Izumori, K. & Leisola,
M. (2007b). A rare sugar xylitol. Part II:
biotechnological production and future
applications of xylitol. Applied microbiology
and biotechnology, 74(2), 273.
- [29] Kwon, S.-G., Park, S.-W. & Oh, D.-K.
(2006). Increase of xylitol productivity by cellrecycle
fermentation of Candida tropicalis
using submerged membrane bioreactor.
Journal of Bioscience and Bioengineering,
101(1), 13-18.
- [30] Ko, B. S., Rhee, C. H. & Kim, J. H.
(2006). Enhancement of xylitol productivity
and yield using a xylitol dehydrogenase genedisrupted
mutant of Candida tropicalis under
fully aerobic conditions. Biotechnology letters,
28(15), 1159-1162.
- [31] Jin, Y.-S., Cruz, J. & Jeffries, T. W.
(2005). Xylitol production by a Pichia stipitis
D-xylulokinase mutant. Applied microbiology
and biotechnology, 68(1), 42-45.
- [32] Jeffries, T. W. (2006). Engineering yeasts
for xylose metabolism. Current opinion in
biotechnology, 17(3), 320-326.
- [33] Jeppsson, M., Bengtsson, O., Franke,
K., Lee, H., Hahn‐Hägerdal, B. & Gorwa‐
Grauslund, M. F. (2006). The expression of a Pichia stipitis xylose reductase mutant with
higher KM for NADPH increases ethanol
production from xylose in recombinant
Saccharomyces cerevisiae. Biotechnology and
bioengineering, 93(4), 665-673.
- [34] Uysal, R. S., Sabancı, S., Sapçı, B.
& Akpınar, Ö. (2015). Lignoselulozik
Materyallerden Ksilitol Üretimi ve Kullanım
Alanları. Academic Food Journal/Akademik
GIDA, 13(2).
- [35] Cirino, P. C., Chin, J. W. & Ingram, L.
O. (2006). Engineering Escherichia coli
for xylitol production from glucose‐xylose
mixtures. Biotechnology and bioengineering,
95(6), 1167-1176.
- [36] Khankal, R., Chin, J. W. & Cirino, P. C.
(2008). Role of xylose transporters in xylitol
production from engineered Escherichia coli.
Journal of biotechnology, 134(3-4), 246-252.
- [37] Hibi, M., Yukitomo, H., Ito, M. &
Mori, H. (2007). Improvement of NADPHdependent
bioconversion by transcriptomebased
molecular breeding. Applied and
environmental microbiology, 73(23), 7657-
7663.
- [38] Nyyssölä, A., Pihlajaniemi, A., Palva,
A., Von Weymarn, N. & Leisola, M. (2005).
Production of xylitol from D-xylose by
recombinant Lactococcus lactis. Journal of
biotechnology, 118(1), 55-66.
- [39] Povelainen, M. & Miasnikov, A. N.
(2007). Production of xylitol by metabolically
engineered strains of Bacillus subtilis. Journal
of biotechnology, 128(1), 24-31.
- [40] Jacobsen, J. H. & Frigaard, N.-U. (2014).
Engineering of photosynthetic mannitol
biosynthesis from CO2 in a cyanobacterium.
Metabolic engineering, 21, 60-70.
- [41] Gombás, Á., Szabó-Révész, P., Regdon, G.
& Erős, I. (2003). Study of thermal behaviour
of sugar alcohols. Journal of thermal analysis
and calorimetry, 73(2), 615-621.
- [42] Sweeteners, A. (2012). O, Brien Nabors,
L., Ed: CRC Press: Boca Raton, FL, USA.
- [43] Wisselink, H., Weusthuis, R., Eggink,
G., Hugenholtz, J. & Grobben, G. (2002).
Mannitol production by lactic acid bacteria: a
review. International Dairy Journal, 12(2-3),
151-161.
- [44] Wang, J., Kim, Y. M., Rhee, H. S., Lee,
M. W. & Park, J. M. (2013). Bioethanol
production from mannitol by a newly isolated
bacterium, Enterobacter sp. JMP3. Bioresource
technology, 135, 199-206.
- [45] Saha, B. C., & Racine, F. M. (2011).
Biotechnological production of mannitol and
its applications. Applied microbiology and
biotechnology, 89(4), 879-891.
- [46] Kiviharju, K. & Nyyssola, A. (2008).
Contributions of biotechnology to the
production of mannitol. Recent patents on
biotechnology, 2(2), 73-78.
- [47] Racine, F. M. & Saha, B. C. (2007). Production of mannitol by Lactobacillus
intermedius NRRL B-3693 in fed-batch and
continuous cell-recycle fermentations. Process
Biochemistry, 42(12), 1609-1613.
- [48] von Weymarn, N., Hujanen, M. &
Leisola, M. (2002). Production of D-mannitol
by heterofermentative lactic acid bacteria.
Process Biochemistry, 37(11), 1207-1213.
- [49] Wisselink, H. W., Moers, A. P., Mars,
A. E., Hoefnagel, M. H., De Vos, W. M., &
Hugenholtz, J. (2005). Overproduction of
heterologous mannitol 1-phosphatase: a key
factor for engineering mannitol production by
Lactococcus lactis. Applied and environmental
microbiology, 71(3), 1507-1514.
- [50] Ferain, T., Schanck, A., & Delcour, J.
(1996). 13C nuclear magnetic resonance
analysis of glucose and citrate end products
in an ldhL-ldhD double-knockout strain
of Lactobacillus plantarum. Journal of
bacteriology, 178(24), 7311-7315.
- [51] Erten, H. (1998). Metabolism of fructose
as an electron acceptor by Leuconostoc
mesenteroides. Process Biochemistry, 33(7),
735-739.
- [52] Gaspar, P., Neves, A. R., Ramos, A.,
Gasson, M. J., Shearman, C. A. & Santos, H.
(2004). Engineering Lactococcus lactis for
production of mannitol: high yields from foodgrade
strains deficient in lactate dehydrogenase
and the mannitol transport system. Applied
and environmental microbiology, 70(3), 1466-
1474.
- [53] Weymarn, F. N. W. v., Kiviharju, K. J.,
Jääskeläinen, S. T. & Leisola, M. S. (2003).
Scale‐up of a New Bacterial Mannitol
Production Process. Biotechnology progress,
19(3), 815-821.
- [54] Reshamwala, S. M., Pagar, S. K., Velhal,
V. S., Maranholakar, V. M., Talangkar, V. G. &
Lali, A. M. (2014). Construction of an efficient
Escherichia coli whole-cell biocatalyst for
D-mannitol production. Journal of Bioscience
and Bioengineering, 118(6), 628-631.
- [55] Kaup, B., Bringer-Meyer, S. & Sahm, H.
(2004). Metabolic engineering of Escherichia
coli: construction of an efficient biocatalyst
for D-mannitol formation in a whole-cell
biotransformation. Applied microbiology and
biotechnology, 64(3), 333-339.
- [56] Kaup, B., Bringer-Meyer, S. & Sahm,
H. (2005). D-Mannitol formation from
D-glucose in a whole-cell biotransformation
with recombinant Escherichia coli. Applied
microbiology and biotechnology, 69(4), 397.
- [57] Washuttl, J. (1973). A qualitative and
quantitative study of sugar alcohols in several
foods. J. food Sci., 38, 1262-1263.
- [58] O’Donnell, K. & Kearsley, M. (2012).
Sweeteners and sugar alternatives in food
technology: John Wiley & Sons.
- [59] Barbieri, G., Barone, C., Bhagat, A.,
Caruso, G., Conley, Z. R. & Parisi, S. (2014).
Sweet compounds in foods: sugar alcohols The Influence of Chemistry on New Foods and
Traditional Products (pp. 51-59): Springer.
- [60] Rhodes, M. & Kator, H. (1999). Sorbitolfermenting
bifidobacteria as indicators of
diffuse human faecal pollution in estuarine
watersheds. Journal of applied microbiology,
87(4), 528-535.
- [61] Wildman, R. E. (2016). Handbook of
nutraceuticals and functional foods: CRC
press.
- [62] Ortiz, M. E., Bleckwedel, J., Raya, R.
R. & Mozzi, F. (2013). Biotechnological and
in situ food production of polyols by lactic
acid bacteria. Applied microbiology and
biotechnology, 97(11), 4713-4726.
- [63] Jonas, R. & Silveira, M. M. (2004). Sorbitol
can be produced not only chemically but also
biotechnologically. Applied biochemistry and
biotechnology, 118(1-3), 321-336.
- [64] Association, J. o. t. A. D. (2004). Position
of the American Dietetic Association: use of
nutritive and nonnutritive sweeteners. Journal
of the American Dietetic Association, 2(104),
255-275.
- [65] Ladero, V., Ramos, A., Wiersma, A.,
Goffin, P., Schanck, A., Kleerebezem, M. &
Hols, P. (2007). High-level production of the
low-calorie sugar sorbitol by Lactobacillus
plantarum through metabolic engineering.
Applied and environmental microbiology,
73(6), 1864-1872.
- [66] Loos, H., Krämer, R., Sahm, H. & Sprenger,
G. A. (1994). Sorbitol promotes growth of
Zymomonas mobilis in environments with
high concentrations of sugar: evidence for a
physiological function of glucose-fructose
oxidoreductase in osmoprotection. Journal of
bacteriology, 176(24), 7688-7693.
- [67] Yebra, M. a. J. & Pérez-Martı́nez, G.
(2002). Cross-talk between the L-sorbose and
D-sorbitol (D-glucitol) metabolic pathways in
Lactobacillus caseiaaThe GenBank accession
number for the sequence reported in this paper
is AF396831. Microbiology, 148(8), 2351-
2359.
___
APA
|
Çakır, E.
(2019).
PRODUCTION OF SUGAR ALCOHOLS WITH BIOTECHNOLOGICAL METHODS
.
International Journal of Food Engineering Research
, 5 (2) ,
47-58 .
|