BIOPLASTICS USED IN RENEWABLE PACKAGING IN THE FOOD INDUSTRY
BIOPLASTICS USED IN RENEWABLE PACKAGING IN THE FOOD INDUSTRY
Food waste from different sources is an environmental burden. In food technology, plastics and polymers
are an alternative option for food packaging, food preservation and preservation, and recycling of food
waste. Today, almost all plastics are produced synthetically and have much better properties than naturally
occurring plastics. The raw materials of all modern plastics are petroleum and natural gas. Due to the nondegradable
properties of these raw materials, it is supported to reduce the cost of production in plastics
by offering an environmentalist approach option. In this review, for polymers such as polyhydroxy
alkanoates (PHA) Poly (3-hydroxybutyrate) (PHB), Polylactic acid, Polylactide aliphatic copolymer
(CPLA), Polycaprolactone (PCL), polyhydroxy-co-3-butyrate-co-3-valerate (PHBV) focuses on available
technologies for polymers. Fermentation technologies based on pure and mixed cultures are of particular
importance in the preparation of raw materials (prepared from food waste) for true bioplastic production. In
this study, alternative methods are provided for the evaluation of food wastes, their economical/technical
approaches meeting the expectations and applicability, and the reduction of waste by solving food wastes
(FW) with environmentally friendly renewable polymer packages.
___
- [1] Awadhiya, D. & Kumar V. V. (2016).
Crosslinking of agarose bioplastic using
citric acid. Carbohydrate Polymers, 151,
60-67.
- [2] Rohrbecka, M., Körstena, S., Fischera,
C. B., Wehnera, S. & Kessler, B. (2013).
Diamond like carbon coating of a pure
bioplastic foil. Thin Solid Films, 545, 558-
563.
- [3] Piemonte, V. (2011). Bioplastic Wastes:
The best final disposition for energy saving.
Journal of Polymers and the Environment,
19, 988–994.
- [4] Tsang, Y. F., Kumar, V., Samadar, P.,
Yang, Y., Lee, J., Ok, Y. S., Song, H.,
Kim, K. H., Kwon, E. E. & Jeon, Y. J.,
(2019). Production of bioplastic through
food waste valorization. Environment
International, 127, 625-644.
- [5] Yadav, B., Pandey, A., Kumar, L. R. &
Tyagi, R. D. (2020). Bioconversion of waste
(water)/residues to bioplastics-A circular
bioeconomy approach. Bioresource
Technology, 298, 122584.
- [6] Kalia, V. C., Raizada, N. & Sonakya, V.
(2000). Bioplastics. Journal of Scientific
and Industrial Research, 59, 433-445.
- [7] Anonymous, 2004. Environmental
product declaration of Mater-Bi NF07U.
Novamont, Italy. http://bio4eu.jrc.
ec.europa.eu/documents/e_epd102.pdf.
(Date Accessed: 12.06.2020)
- [8] Wu, C. S. (2011). Characterization and
biodegradability of polyester bioplastic
based green renewable composites from
agricultural residues. Polymer Degradation
and Stability, 97(1), 64-71.
- Harding, K. G., Dennis, J. S., Blottnitz,
H. V. & Harrison, S. T. L., (2007).
Environmental analysis of plastic
production processes: Comparing
petroleum-based polypropylene and
polyethylene with biologically based poly-
β-hydroxybutyric acid using life cycle
assessment. Journal of Biotechnology,
130, 57–66.
- [10] Gironi, F. & Piemonte, V. (2011).
Bioplastics and petroleum-based plastics:
Strengths and Weaknesses. Energy
Sources, Part A: Recovery, Utilization, and
Environmental Effects, 33(21), 1949-1959.
- [11] Yamada, M., Morimitsu, S., Hosono,
E. & Yamada, T. (2020). Preparation of
bioplastic using soy protein. International
Journal of Biological Macromolecules,
149, 1077-1083.
- [12] Accinelli, C., Sacca, M. L., Mencarelli,
M. & Vicari, A. (2012). Application of
bioplastic moving bed bio-film carriers for
the removal of synthetic pollutants from
wastewater. Bioresource Technology, 120,
180-186.
- [13] Peelman, N., Ragaert, P., Meulenaer, B.,
Adons, D., Peeters, R., Cardon, L., Impe,
V. F. & Devlieghere, F. (2013). Application
of bioplastics for food packaging. Trends
in Food Science and Technology, 32(2),
128-141.
- [14] Zhao, Xi., Ji, K., Kurt, K., Cornish, K. &
Vodovotz, Y. (2019). Optimal mechanical
properties of biodegradable natural rubber
toughened PHBV bioplastics intended
for food packaging applications. Food
Packaging and Shelf Life, 21, 100348.
- [15] Siracusa, V., Rocculi, P., Romani, S. & Rosa,
M. D. (2008). Biodegradable polymers for
food packaging: A review. Trends in Food
Science and Technology, 19(12), 634-643.
- [16] Berthet, M. A., Coussey, H. A., Chea,
V., Guillard, V., Gastaldi, E. & Gontard
N. (2015). Sustainable food packaging:
Valorising wheat straw fibres for tuning
PHBV based composites properties.
Composites Part A, Applied Science and
Manufacturing, 72, 139-147.
- [17] Takma, D. K. & Nadeem, H. Ş. (2019).
Gıdalarda akıllı ambalajlama teknolojisi
ve güncel uygulamalar. The Journal of
food. 44(1), 131-142.
- [18] Yu, H., Yan, C. & Yao, J. (2014). Fully
biodegradable food packaging materials
based on functionalized cellulose
nanocrystals/poly (3-hydroxybutyrate-co-
3-hydroxyvalerate)
nanocomposites. RSC Advances, 104,
59792-59802.
- [19] Phromma, W., & Magaraphan, R. (2018).
Fabrication of admicelled natural rubber
by polycaprolactone for toughening poly
(lactic acid). Journal of Polymers and the
Environment, 26(6), 2268-2280.
- [20] Luengo, J. M., Garcı́a, B., Sandoval,
A., Naharro G. & Olivera E. R. (2003).
Bioplastics from microorganisms. Current
Opinion in Microbiology, 6(3), 251-260.
- [21] Ravindran, R. & Jaiswal, A.K. (2016).
Exploitation of food industry waste for high
value products. Trends in Biotechnology,
34(1), 58-69.
- [22] Pfaltzgraff, L. A., Bruyn, M., Cooper, E.
C., Budarin, V. & Clark J. H. (2013). Food
waste biomass: a resource for high value
chemicals. Green Chemistry, 15(2), 307-
314.
- [23] Krochta, J. M. & Mulder-Johnson, C.
(1997). Edible and biodegradable polymer
films: challenges and opportunities. Food
Technology, 61
- [24] Kaplan, D. L., Hocking, P. J.
& Marchessault, R. H. (1998).
Polyhydroxyalkanoates. Biopolymers from
Renewable Resources, 220-248
- [25] Martin, O. & Averous, L. (2001). Poly
(lactic acid): plasticization and properties
of biodegradable multiphase systems.
Polymers, 42(14), 6209-6219.
- [26] Yang, L. & Paulson, A. T. (2000). Effects
of lipids on mechanical and moisture
barrier properties of edible gellan film.
Food Research International, 33(7), 571-
578.
- [27] Barron, C., Varoquaux, P., Guilbert, S.,
Gontard, N. & Gouble, B. (2002). Modified
atmosphere packaging of cultivated
mushroom (Agaricus bisporus L.) with
hydrophilic films. Journal of Food Science,
67(1), 251-255.
- [28] Suman, S. P., Mancini, R. A, Joseph, P.,
Ramanathan, R., Konda, M. K. R., Dady,
G. & Yin, S., (2010). Packaging specific
influence of chitosan on color stability and
lipid oxidation in refrigerated ground beef.
Meat Science, 86(4), 994-998.
- [29] Koller, M., Marsalek, L., Mirandade, M.,
Dias S. & Braunegg G. (2017). Producing
microbial polyhydroxyalkanoate (PHA)
biopolyesters in a sustainable manner. New
Biotechnology, 37, 24-38.
- [30] Serafim, L. S., Lemos, P. C., Albuquerque,
M. G. E. & Reis, M. A. M. (2008).
Strategies for PHA production by mixed
cultures and renewable waste materials.
Appl Microbiol Biotechnol, 81, 615-628.
- [31] Koch, D. R. & Mihalyi, B. (2018). Assessing
the change in environmental impact
categories when replacing conventional
plastic with bioplastic in chosen application
fields. Environmental Science, Chemical
Engineering Transactions, 70, 2283-9216.
- [32] Salgaonkar, B. B. & Bragança, J. M.,
(2017). Utilization of sugarcane bagasse by
halogeometricum borinquense strain E3 for
biosynthesis of poly (3-hydroxybutyrateco-
3-hydroxyvalerate). Bioengineering,
4(2), 50.
- [33] Chee, J. Y., Yoga, S. S., Lau, N. S.,
Ling, S. C., Abed, R. M. M. & Sudesh,
K. (2010). Bacterially produced
polyhydroxyalkanoate (PHA): Converting
renewable resources into bioplastics.
Applied Microbiology and Microbial
Biotechnology, 2, 1395.
- [34] Ciesielski, S. & Mozejko, J. (2013).
Saponified waste palm oil as an
attractive renewable resource for mclpolyhydroxyalkanoate
synthesis. Journal of Bioscience and Bioengineering, 116(4),
485-492.
- [35] Jiang, H. L., Jin, J. Z., Wu, D., Xu, D., Lin,
G. F., Yu, H., Ma, D. Y. & Liang J. (2013).
Celastrol exerts synergistic effects with
PHA-665752 and inhibits tumor growth of
c-Met-deficient hepatocellular carcinoma
in vivo. Molecular Biology Reports, 40,
4203-4209.
- [36] Bussemaker, M. J. & Zhang, D. (2013).
Effect of ultrasound on lignocellulosic
biomass as a pretreatment for biorefinery
and biofuel applications. Industrial and
Engineering Chemistry, 52(10), 3563-
3580.
- [37] Cesario, M. T., Raposo, R. S., Almeida, M.
C. M. D., Keulen, F. V., Ferreira, B. S. &
Da Fonseca, M. M. R. (2014). Enhanced
bioproduction of poly-3-hydroxybutyrate
from wheat straw lignocellulosic
hydrolysates. New Biotechnology, 31, 104-
113.
- [38] Pais, J., Serafim, S., Freitas, F. & Reis,
M. A. M. (2016). Conversion of cheese
whey into poly (3-hydroxybutyrateco-
3-hydroxyvalerate) by haloferax
mediterranei. New Biotechnol, 33(1), 224-
230.
- [39] Tokiwa, Y., Calabia, B. P., Ugwu, C.U.
& Aiba, S. (2009). Biodegradability
of plastics. International Journal of
Molecular Sciences, 10, 3722-3742.
- [40] Lim, J., You, M., Li, J. & Li, Z. (2017).
Emerging bone tissue engineering via
polyhydroxyalkanoate (PHA) based
scaffolds. Materials Science and
Engineering C: Materials for Biological
Applications, 79, 917-929.
- [41] Aldor, I. S. & Keasling, J. D. (2003).
Process design for microbial plastic
factories: Metabolic engineering of
polyhydroxyalkanoates. Current Opinion
in Biotechnology, 14, 475-483.
- [42] Amara, A. A., Steinbüchel, A. &
Rehm, B. H. A. (2002). In vivo
evolution of the aeromonas punctata
polyhydroxyalkanoate (PHA) synthase:
isolation and characterization of modified
PHA synthases with enhanced activity.
Appl Microbiol Biotechnol, 59, 477-482.
- [43] Weber, C. J., Haugaard, V., Festersen,
R. & Bertelsen, G. (2002). Production
and applications of biobased packaging
materials for the food industry. Food
Additives and Contaminants, 19(1), 172-
177.
- [44] Cabedo, L., Feijoo, J. L., Villanueva, M.
P. & Lagarón, J.M. (2006). Optimization
of biodegradable nanocomposites based
on a PLA/PCL blends for food packaging
applications. Macromolecular Symposia,
233(1), 191-197.
- [45] Kumar, Y., Shukla, P., Singh, P.,
Prabhakaran, P. P., & Tanwar, V. K. (2014).
Bioplastics. A perfect tool for eco-friendly
food packaging: A Review. Journal of Food
Product Development and Packaging, 1,
1-6.