Comparison of the Radiation Absorption Properties of PbO doped ZrB2 Glasses by using GATE-GEANT4 Monte Carlo Code and XCOM Program

Comparison of the Radiation Absorption Properties of PbO doped ZrB2 Glasses by using GATE-GEANT4 Monte Carlo Code and XCOM Program

The aim of this study is to investigate the gamma ray radiation absorption properties of ZrB2 (zirconium diboride), which is used in the nuclear industry, space industry, military industry and especially in the ceramic industry and determine the effect of PbO additive in the shielding. Also, the Geant4 Application Tomographic Emission monte carlo code will be tested for its usability in place of XCOM computer program with an appropriate geometry. Within this scope, the shielding properties of ZrB2, Pb0 and 50%ZrB2.50%Pb0 glasses at 511, 662, 1173, 1274 and 1332 keV gamma energies were calculated by the Geant4 Application Tomographic Emission monte carlo code and compared with the XCOM computer programme. The linear attenuation coefficient and half value layer were calculated by using the mass attenuation coefficient values obtained with the codes. In line with these results, it is possible to say that 50%PbO additive increases the shielding quality of ZrB2 glasses. On the other hand, the simulated Geant4 Application Tomographic Emission monte carlo code values were found to be compatible with XCOM.

___

  • [1] A. Coşkun, B. Cetin, (2023). The Effect of Lead Oxide on the Change in Gamma Ray Protection Parameters of Bismuth Oxide. European Journal of Science andTechnology 47;18-21.
  • [2] D. Dodoo-Amoo, N. Landsberger, S.,J. M. MacDonald, &, J. M. Castro., (2003) Development of composite materials for non-leaded gloves for use in radiological hand protection. Health physics, 84(6); 737-746. https://doi.org/10.1097/00004032-200306000-00006.
  • [3] F. Demir, (2009). Determination of radiation absorbance for neutron particles, x and ɣ rays of heavy concrete with boron and barite aggregates. Ataturk University Graduate School of Natural and Applied Sciences Ph. D. Thesis.
  • [4] K. Boonin, P.Yasaka, P Limkitjaroenporn, R.Rajaramakrishna, A Askin, MI, Sayyed, ...&J.Kaewkhao, (2020). Effect of BaO on lead-free zinc barium telluride glass for radiation shielding materials in nuclear application. Journal of Crystalline Solids, 550;120386. https://doi.org/10.1016/j.jnoncrysol.2020.120386
  • [5] W. Cheewasukhanont, P. Limkitjaroenporn, S. Kothan, C. Kedkaew&, J. Kaewkhao, (2020). Effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiation Physics and Chemistry, 172;108791. https://doi.org/10.1016/j.radphyschem. 2020.108791
  • [6] S. Ruengsri, J. Kaewkhao, P Limkitjaroenporm, P. Meejitpaisan, P. Hongtong, W.&W. Cheewasukhanont, (2017). Development of gadolinium calcium phosphate oxyfluoride glass for radiation shielding materials. Integrated Ferroelectrics, 177(1);48-58. https://doi.org/ 10.1080/10584587.2017.1285172
  • [7] L. Gerward, N. Guilbert, K. B. Jensen, H. Levring, (2001). X-ray absorption in the matter. Reengineering XCOM. Radiation Physics and Chemistry 60;23–24. https://doi.org/10.1016/S0969-806X(00)00324-8
  • [8] L. Gerward, N.Guilbert, K.B. Jensen,H. Levring, (2004). WinXCom—a program for calculation X-ray attenuation coefficients. Radiation Physics and Chemistry 71;653–654. https://doi.org/10.1016/ j.radphyschem.2004.04.040
  • [9] T. Inoue, T. Honma, V. Dimitrov&T. Komatsu, (2010). Approach to thermal properties and electronic polarizability from average single bond strength in ZnO, Bi2O3, and B2O3 glasses. Journal of solid state chemistry, 183(12);3078-3085. https://doi.org/10.1016/ j.jssc.2010.10.027
  • [10] K. Kirdsiri, J. Kaewkhao, N. Chanthima&P. Limsuwan, (2011). Comparative study of silicate glasses containing Bi2O3, PbO, and BaO: Radiation shielding and optical properties. Annals of Nuclear energy, 38(6);1438-1441 https://doi.org/10.1016/j.anucene.2011.01. 031
  • [11] N. Chanthima, J. Kaewkhao&PLimsuwan,(2011). Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO, and PbO in the energy region of 1 keV to 100 GeV. Annals of Nuclear energy, 41; 119-124.https://doi.org/10.1016/j.anucene. 2011.10.021
  • [12] J. Kaewkhao, A. Pokaipisit, &P. Limsuwan, (2010). Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: comparison with PbO. Journal of Nuclear Materials, 399(1);38-40. https://doi.org/10.1016/j.jnucmat.2009.12.020
  • [13] P. Yasaka, N. Pattanaboonmee, H. J. Kim, P. Limkitjaroenporn&J. Kaewkhao, (2014). Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Annals of Nuclear energy, 68;4-9. https://doi.org/10.1016/j.anucene.2013. 12.015
  • [14] K.A. Matori, M.I. Sayyed, H.A.A.Sidek, M.H.M. Zaid, V.P. Singh, (2017). A comprehensive study on physical, elastic, and shielding properties of lead zinc phosphate glasses, J.Non-Cryst. Solids 457;97-103. https://doi.org/10.1016/j.jnoncrysol.2016.11.029
  • [15] N. Singh, K. J. Singh, K. Singh, H. Singh, (2004). Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials, Nucl. Instrum. Methods Phys. Res. B 225; 305–309. https://doi.org/10.1016/j.nimb.2004.05.016
  • [16] R. Bagheri, A.K. Maghaddam and H.Yousefnia, (2017). Gamma-ray shielding study of Barium-Bismuth-Borosilicate glasses as transparent shielding materials using MCNP-4C code, XCom program, and available experimental data. Nuclear Engineering and Technology, 49;216-223. https://doi.org/10.1016/j.net. 2016.08.013
  • [17] A.S. Abouhaswa, U. Perişanoğlu, H.O.Tekin, E. Kavaz, AMA. Henaish, (2020). Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: Multiple impacts of Er2O3 additive. Ceram Int 46:27849–59. https://doi.org/10.1016/j.ceramint.2020.07.283.
  • [18] SA. Feller, WJ. Dell, PJ. Bray,(1982). 10B NMR studies of lithium borate glasses. J Non-Cryst Solids 51:21–30. https://doi.org/10.1016/0022-3093(82) 90186-7.
  • [19] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, (2010). XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8. XGAM. https://physics.nist.gov/cgi-bin/Xcom/xcom2 (accessed:20. July.2022).
  • [20] Ö. Balcı, N. Akçamlı, D.Ağaoğulları, M. L.Öveçoğlu&İ.Duman, (2017). Autoclave processing and sintering of ZrB2-ZrO2 powders and investigation of microstructural and some mechanical properties of bulk products. Journal of Boron, 2(1);1-10.
  • [21] W. G. Fahrenholtz&G. E. Hilmas, (2012). Oxidation of ultra-high temperature transition metal diboride ceramics. International Materials Reviews, 57(1); 61-72. https://doi.org/10.1179/1743280411Y. 0000000012
  • [22] Adam L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, D. T. Ellerby, (2004) High-strength zirconium diboride-based ceramics, Journal of the American Ceramic Society 87(6); 1170 – 1172. https://doi.org/ 10.1111/j.1551-2916.2004.01170.x
  • [23] Y. Pan&S. Chen, (2022). Influence of alloy ingelements on the mechanical and thermodynamic properties of ZrB2 boride. Vacuum, 198; 110898. https://doi.org/10.1016/j.vacuum.2022.110898
  • [24] H. Li, He, Y.,P. Luo,S. Xue,Z.Li, X.Cheng, ... &Y. Fan, (2022). Synthesis of ZrB2 strengthened NiW composite coating and study of its mechanical characters and anti-corrosion performance. Surface and Coatings Technology, 441; 128553. https://doi.org/10.1016/ j.surfcoat.2022.128553
  • [25] S. Torabi, Z.Valefi&N. Ehsani, (2022). The effect of the SiC content on the high duration erosion behavior of SiC/ZrB2–SiC/ZrB2 functionally gradient coating produced by shielding shrouded plasma spray method. Ceramics International, 48(2); 1699-1714. https://doi.org/10.1016/j.ceramint. 2021.09.249
  • [26] P. Morampudi, V. Ramana, C. Prasad&K. Sriram Vikas,(2022). Physical, mechanical and corrosion properties of Al6061/ZrB2 metal matrix nanocomposites via powder metallurgy process. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.03. 596
  • [27] Y. Xu, S. Huang, D.Han, M. Dai, X.Zhong,Y. Niu,.,&X. Zheng, (2022). Effect of different SiC/TaSi2 contents on ablation behavior of ZrB2coating. Corrosion Science, 205;110424. https://doi.org/10.1016/j.corsci. 2022.110424
  • [28] M. Patel, J. Reddy&V.B. Prasad,(2021). High thermal conductivity aluminium nitride–zirconium diboride (AlN-ZrB2) composite as microwave absorbing material. Ceramics International, 47(15); 21882-21889. https://doi.org/10.1016/j.ceramint.2021.04.206
  • [29] M. Zhang, Z.M. Li, Z.Yan, L. Zhang, J. Yin, X. Ma, ... &L. Deng, (2022). Multifunctional Ag-ZrB2 composite film with low infrared emissivity, low visible light reflectance and hydrophobicity. Applied Surface Science, 604;154626. https://doi.org/10.1016/j.apsusc. 2022.154626
  • [30] http://www.opengatecollaboration.org/(accessed 26 November 2022).
  • [31] I. SAM, H. O. Tekin, (2019). The multiple characterizations of gamma, neutron, and proton shielding performances of xPbO-(99-x)B2O3–Sm2O3 glass system. Ceramic International, 45: 23561–71. https://doi.org/10.1016/j.ceramint.2019.08.065.
  • [32] A. M. El-Khayatt, HA. Saudy, (2019). Preparation and characterization of zinc, lanthanum white sand glass for use in nuclear applications. Radiation Physics and Chemistry, 166:108497, https://doi.org/10.1016/j. radphyschem.2019.108497
  • [33] B. Mavi, (2012). Experimental investigation of γ-ray attenuation coefficients for granites. Annals of Nuclear Energy, 44;22-25, https://doi.org/10.1016/ j.anucene.2012.01.009
  • [34] S.I. Mohammed, A.H. Taqi, & A.M. Ghalib, (2021). Simulation of the Gamma Attenuation through Borate Glass Using Genat4. Rafidain Journal of Science, 30(2); https://doi.org/11-22.10.33899/ rjs.2021. 168339