Optimizing Infill Parameters for Improved Mechanical Performance and Cost Savings in Additive Manufacturing

Optimizing Infill Parameters for Improved Mechanical Performance and Cost Savings in Additive Manufacturing

In this study, compression tests were performed on the samples produced with PLA filament with different infill parameters and infill densities by additive manufacturing method and their mechanical performances & static energy absorption capabilities were evaluated. According to the results obtained, it was determined that the samples with triangular and tri-hexagonal infill parameters performed better and it has been shown that time, material and energy can be saved without losing materials mechanical performance.

___

  • [1] S.K. Selvamani, W.K. Ngui, K. Rajan, M. Samykano, Reji Kumar R, Avinash M. Badadhe, (2022). Investigation of bending and compression properties on PLA-brass composite using FDM, Physics and Chemistry of the Earth 128
  • [2] Rajan, K., Samykano, M., Kadirgama, K., Harun, W.S.W., Rahman, M.M., 2022. Fused deposition modeling: process, materials, parameters, properties, and applications. Int. J. Adv. Manuf. Technol. 120 (3–4); 1531–1570.
  • [3] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui. (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Compos. Part B Eng. 143;172–196.
  • [4] O. Abdulhameed, A. Al-Ahmari, W. Ameen, S.H. Mian. (2019). Additive manufacturing: challenges, trends, and applications. Adv. Mech. Eng. 11 (2).
  • [5] K.V. Wong, A. Hernandez, (2012). A review of additive manufacturing, ISRN Mech. Eng. 1–10
  • [6] M. O. Oteyaka, F. H. Çakir, M. A. Sofuoglu. (2022). Effect of infill pattern and ratio on the flexural and vibration damping characteristics of FDM printed PLA samples, Materials Today Communications 33.
  • [7] Kumaresan, R., Samykano, M., Kadirgama, K., Ramasamy, D., Keng, N.W., Pandey, A.K., (2021). 3D printing technology for thermal application: a brief review. J. Adv. Res. Fluid Mech. Therm. Sci. 83 (2); 84–97.
  • [8] Braconnier, D.J., Jensen, R.E., Peterson, A.M., (2020). Processing parameter correlations in material extrusion additive manufacturing. Addit. Manuf. 31 https://doi.org/ 10.1016/j.addma.2019.100924.
  • [9] Md. Qamar Tanveer, Gautam Mishra, Siddharth Mishra, Rohan Sharma (2022). Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review, Materials Today: Proceedings 62;100-108.
  • [10] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero. (2016). Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing, 3D Print, Addit. Manuf. 3 (3): 183–192.
  • [11] K.P. Motaparti, G. Taylor, M.C. Leu, K. Chandrashekhara, J. Castle, M. Matlack, (2016). Effects of build parameters on compression properties for ULTEM 9085 parts by fused deposition modeling, Solid Free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF. 964–977.
  • [12] D. Abbas, D. Mohammad Othman, H. Basil Ali, C. Author (2017). Effect of infill Parameter on compression property in FDM Process, Int. J. Eng. Res. And Application Www.Ijera.Com. 7; 16–19. 10.9790/9622-0710021619.
  • [13] J.M. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núñez, (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Mater. Des. 124; 143–157.
  • [14] S.M. Lebedev, O.S. Gefle, E.T. Amitov, D.V. Zhuravlev, D.Y. Berchuk, E.A. Mikutskiy. (2018). Mechanical properties of PLA-based composites for fused deposition modeling technology, Int. J. Adv. Manuf. Technol. 97 (1-4): 511–518.
  • [15] A. Rodríguez-Panes, J. Claver, A. Camacho. (2018). The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis, Materials (Basel). 11 :1333.
  • [16] A. Nadernezhad, S. Unal, N. Khani, B. Koc. (2019). Material extrusion-based additive manufacturing of structurally controlled poly(lactic acid)/carbon nanotube nanocomposites, Int. J. Adv. Manuf. Technol. 102 (5-8): 2119–2132.
  • [17] O.H. Ezeh, L. Susmel. (2019). Fatigue strength of additively manufactured polylactide (PLA): effect of raster angle and non-zero mean stresses, Int. J. Fatigue. 126 :319–326.
  • [18] M.Q. Tanveer, A. Haleem, M. Suhaib. (2019). Effect of variable infill density on mechanical behaviour of 3-D printed PLA sample: an experimental investigation, SN Appl. Sci. 1: 1701.
  • [19] T. Yao, Z. Deng, K. Zhang, S. Li. (2019). A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations, Compos. Part B Eng. 163:393–402.
  • [20] M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj, K. Sudhakar. (2019). Mechanical property of FDM printed ABS: influence of printing parameters, Int. J. Adv. Manuf. Technol. 102 (9-12): 2779–2796.
  • [21] B. Aloyaydi, S. Sivasankaran, A. Mustafa. (2020). Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid, Polym. Test. 87.
  • [22] K.N. Gunasekaran, V. Aravinth, C.B. Muthu Kumaran, K. Madhankumar, S. Pradeep Kumar. (2021). Investigation of mechanical properties of PLA printed materials under varying infill density, Mater. Today Proc. 45: 1849–1856.
  • [23] S.R. Rajpurohit, H.K. Dave. (2021). Impact strength of 3D printed PLA using open source FFF-based 3D printer, Prog. Addit. Manuf. 6 (1): 119–131.
  • [24] P. Yadav, A. Sahai, R.S. Sharma. (2021). Strength and Surface Characteristics of FDM Based 3D Printed PLA Parts for Multiple Infill Design Patterns, J. Inst. Eng. Ser. C. 102 (1): 197–207.
  • [25] A. Farazin, M. Mohammadimehr. (2021). Effect of different parameters on the tensile properties of printed Polylactic acid samples by FDM: experimental design tested with MDs simulation, Int. J. Adv. Manuf. Technol.
  • [26] P.K. Mishra, P. Senthil, S. Adarsh, M.S. Anoop. (2021). An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts, Compos. Commun. 24.
  • [27] P. Patil, D. Singh, S.J. Raykar, J. Bhamu. (2021). Multi-objective optimisation of process parameters of Fused Deposition Modeling (FDM) for printing Polylactic Acid (PLA) polymer components, Mater. Today Proc. 45: 4880–4885.
  • [28] M. Samykano. (2021). Mechanical Property and Prediction Model for FDM-3D Printed Polylactic Acid (PLA), Arab. J. Sci. Eng. 46 (8): 7875–7892.