Effect of Different Conical Punch Angle Geometries and the Initial Hole Diameters on the Hole Expansion Ratio of DP steels

In the recent decade, advanced high strength steels (AHSS) have gained a great popularity in the automotive manufacturing industries due to their high strength to weight ratio, which significantly improves the safety of the manufactured automobiles while reducing the weight and thus, enabling to improve the fuel efficiency. However, it is known that some types of AHSSs, especially DP steels, are highly susceptible to edge cracking behaviour during the forming operations. Edge cracking behaviour is generally investigated with a 600 conical punch as suggested by the ISO 16630 standard. However, in this study, to observe the behaviour of edge cracking ability of DP steels under different conical punch angles for different initial hole diameters, hole expansion tests have been performed with conical punches with three different angles (300 ,600, 900) for three different initial hole diameters (14, 16, 18 mm). The results have shown that the hole expansion ratio (HER) does not differ considerably with the variation of the conical punch angle and the initial hole diameter due to low fracture strain of DP steels observed after hole expansion tests. The major factor for the edge stretching ability of DP steels have been observed to be microstructure rather than geometrical factors such as conical punch angles.

___

  • [1] S. Park et al., ‘A dual-scale FE simulation of hole expansion test considering pre-damage from punching process’, Int. J. Solids Struct., vol. 236–237, no. August, p. 111312, 2022, doi: 10.1016/j.ijsolstr.2021.111312.
  • [2] X. Yu, J. Chen, and J. Chen, ‘Interaction effect of cracks and anisotropic influence on degradation of edge stretchability in hole-expansion of advanced high strength steel’, Int. J. Mech. Sci., vol. 105, pp. 348–359, 2016, doi: 10.1016/j.ijmecsci.2015.11.026.
  • [3] K. ichiro Mori, Y. Abe, and Y. Suzui, ‘Improvement of stretch flangeability of ultra high strength steel sheet by smoothing of sheared edge’, J. Mater. Process. Technol., vol. 210, no. 4, pp. 653–659, 2010, doi: 10.1016/j.jmatprotec.2009.11.014.
  • [4] A. Ishiwatari, M. Urabe, and T. Inazumi, ‘Press forming analysis contributing to the expansion of high strength steel sheet applications’, JFE Tech. Rep., vol. 18, no. 18, pp. 96–102, 2013.
  • [5] M. D. Taylor et al., ‘Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels’, Mater. Sci. Eng. A, vol. 597, pp. 431–439, 2014, doi: 10.1016/j.msea.2013.12.084.
  • [6] L. Chen, J. K. Kim, S. K. Kim, G. S. Kim, K. G. Chin, and B. C. De Cooman, ‘Stretch-flangeability of high Mn TWIP steel’, Steel Res. Int., vol. 81, no. 7, pp. 552–568, 2010, doi: 10.1002/srin.201000044.
  • [7] J. I. Yoon et al., ‘Correlation between fracture toughness and stretch-flangeability of advanced high strength steels’, Mater. Lett., vol. 180, pp. 322–326, 2016, doi: 10.1016/j.matlet.2016.05.145.
  • [8] K. Prasad, B. Venkatesh, H. Krishnaswamy, D. K. Banerjee, and U. Chakkingal, ‘On the interplay of friction and stress relaxation to improve stretch-flangeability of dual phase (DP600) steel’, CIRP J. Manuf. Sci. Technol., vol. 32, pp. 154–169, 2021, doi: 10.1016/j.cirpj.2020.11.014.
  • [9] J. Krawczyk, Z. Gronostajski, S. Polak, K. Jaśkiewicz, W. Chorzȩpa, and I. Pȩcak, ‘The influence of the punch shape and the cutting method on the limit strain in the hole expansion test’, Key Eng. Mater., vol. 716, pp. 129–137, 2016, doi: 10.4028/www.scientific.net/KEM.716.129.
  • [10] S. K. Paul, ‘A critical review on hole expansion ratio’, Materialia, vol. 9, no. October 2019, p. 100566, 2020, doi: 10.1016/j.mtla.2019.100566.
  • [11] A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, and A. Pichler, ‘Hole expansion of dual-phase and complex-phase AHS steels - Effect of edge conditions’, Steel Res. Int., vol. 80, no. 1, 2009, doi: 10.2374/SRI08SP110.
  • [12] V. Balisetty, U. Chakkingal, and S. Venugopal, ‘Evaluation of stretch flangeability of dual-phase steels by hole expansion test’, Int. J. Adv. Manuf. Technol., vol. 114, no. 1–2, pp. 205–217, 2021, doi: 10.1007/s00170-021-06850-9.
  • [13] B. S. Levy and C. J. Van Tyne, ‘Review of the shearing process for sheet steels and its effect on sheared-edge stretching’, J. Mater. Eng. Perform., vol. 21, no. 7, pp. 1205–1213, 2012, doi: 10.1007/s11665-011-9997-x.
  • [14] J. Chintamani and S. Sriram, ‘Sheared edge characterization of steel products used for closure panel applications’, SAE Tech. Pap., no. 724, 2006, doi: 10.4271/2006-01-1589.
  • [15] R. Hambli and S. Richir, ‘Damage mechanics approach in crack growth simulation during the fine blanking process’, Int. J. Mater. Prod. Technol., vol. 19, no. 6, pp. 466–478, 2003, doi: 10.1504/IJMPT.2003.003465.
  • [16] Y. Chang, S. Han, X. Li, C. Wang, G. Zheng, and H. Dong, ‘Effect of shearing clearance on formability of sheared edge of the third-generation automotive medium-Mn steel with metastable austenite’, J. Mater. Process. Technol., vol. 259, no. 2, pp. 216–227, 2018, doi: 10.1016/j.jmatprotec.2018.04.038.
  • [17] Y. Wu, J. Uusitalo, and A. J. DeArdo, ‘Investigation of the critical factors controlling sheared edge stretching of ultra-high strength dual-phase steels’, Mater. Sci. Eng. A, vol. 828, no. August, p. 142070, 2021, doi: 10.1016/j.msea.2021.142070.
  • [18] N. Şen, F. Helimergin, and V. Taşdemir, ‘Effects of fine blanking process on cutting surfaces of high-strength DP600 and DP800 sheets’, Ironmak. Steelmak., vol. 48, no. 9, pp. 1083–1088, 2021, doi: 10.1080/03019233.2021.1915647.
  • [19] M. Zhou, Y. Li, Q. Hu, X. Li, and J. Chen, ‘Investigations on edge quality and its effect on tensile property and fracture patterns of QP980’, J. Manuf. Process., vol. 37, no. September 2018, pp. 509–518, 2019, doi: 10.1016/j.jmapro.2018.12.028.
  • [20] B. M. Hance, R. J. Comstock, and D. K. Scherrer, ‘The influence of edge preparation method on the hole expansion performance of automotive sheet steels’, SAE Tech. Pap., vol. 2, 2013, doi: 10.4271/2013-01-1167.
  • [21] Y. G. Deng, H. S. Di, and J. C. Zhang, ‘Effect of heat-treatment schedule on the microstructure and mechanical properties of cold-rolled dual-phase steels’, Acta Metall. Sin. (English Lett., vol. 28, no. 9, pp. 1141–1148, 2015, doi: 10.1007/s40195-015-0305-x.
  • [22] Y. Wu, J. Uusitalo, and A. J. DeArdo, ‘Investigation of the critical factors controlling sheared edge stretching of ultra-high strength dual-phase steels’, Mater. Sci. Eng. A, vol. 828, no. August, p. 142070, 2021, doi: 10.1016/j.msea.2021.142070.
  • [23] K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, ‘Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets’, ISIJ Int., vol. 44, no. 3, pp. 603–609, 2004, doi: 10.2355/isijinternational.44.603.
  • [24] X. Hu, X. Sun, K. Raghavan, R. J. Comstock, and Y. Ren, ‘Linking constituent phase properties to ductility and edge stretchability of two DP 980 steels’, Mater. Sci. Eng. A, vol. 780, no. October 2019, p. 139176, 2020, doi: 10.1016/j.msea.2020.139176.
  • [25] N. Pathak, C. Butcher, and M. Worswick, ‘Assessment of the Critical Parameters Influencing the Edge Stretchability of Advanced High-Strength Steel Sheet’, J. Mater. Eng. Perform., vol. 25, no. 11, pp. 4919–4932, 2016, doi: 10.1007/s11665-016-2316-9.
  • [26] C. Chiriac, ‘A study of the plastic deformation of sheared edges of dual phase 780 steel’, SAE Tech. Pap., pp. 1–12, 2010, doi: 10.4271/2010-01-0441.
  • [27] S. K. Paul, ‘Effect of punch geometry on hole expansion ratio’, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 234, no. 3, pp. 671–676, 2020, doi: 10.1177/0954405419863222.
  • [28] Y. Ito, Y. Nakazawa, Y. Kuriyama, K. Suzuk, and N. Suzuki, ‘Effects of Vertical Angle of Conical Punch on Stretch Flangeability of High Strength Steel’, Acta Metall. Sin. (English Lett., vol. 28, no. 12, pp. 1503–1509, 2015, doi: 10.1007/s40195-015-0350-5.