Effects of fly ash introduction on friction and wear characteristics of brake pads

Effects of fly ash introduction on friction and wear characteristics of brake pads

Fly ash is a waste matter generally emitted abundantly from chimneys of the production facilities and should mostly be recycled. In this context, this study reveals the tribological effects of fly ash on brake pad components by doping the fly ash in basic brake pad matrix with various weight fractions of 30% (S30), 35% (S35) and 40% (S40) by reducing aluminum powder in the pad matrix. According to the results, as the fly ash concentration increases in the matrix, density and hardness of the structure were prone to decrease to an extent. Water immersion technique was used to determine density values and specially modified pin-on-disc tribotester was utilized to measure coefficient of friction (CF) and specific wear rate (SWR) values between brake pad samples and the cast iron rotating disc. Among prepared samples, maximum average reduction in density and hardness were observed to be by 3.97% and 10.67%, respectively. S30 depicted the minimum CF of 0.32 and maximum CF of 0.43 was performed by S40. Maximum specific wear rate was observed for S40 subtending to an increase of 8.67% from that of S30 to S40. Results showed that, though higher escalation in CF as the fly ash fraction elevates in the matrix, wear rates did not show a dramatic increase which is an indication of effectiveness of fly ash in brake pads in terms of braking performance and long term durability.

___

  • Nunney, M.J., “Light and heavy vehicle technology,” Taylor&Francis Group, 2007, doi:10.4324/9780080465753.
  • Menapace, C., Leonardi, M., Secchi, M., Bonfanti, A., Gialanella, S., and Straffelini, G., “Thermal behavior of a phenolic resin for brake pad manufacturing,” J. Therm. Anal. Calorim. 137(3), 759–766, 2019, doi:10.1007/s10973-019-08004-2.
  • Yu, J., He, J., and Ya, C., “Preparation of phenolic resin/organized expanded vermiculite nanocomposite and its application in brake pad,” J. Appl. Polym. Sci. 119(1), 275–281, 2011, doi:10.1002/app.32557.
  • Gurunath, P. V. and Bijwe, J., “Friction and wear studies on brake-pad materials based on newly developed resin,” Wear, 263, 1212–1219, 2007, doi:10.1016/j.wear.2006.12.050.
  • Praveenkumar, B. and Darius Gnanaraj, S., “Case studies on the applications of phenolic resin-based composite materials for developing eco-friendly brake pads,” J. Inst. Eng. Ser. D 101(2), 327–334, 2020, doi:10.1007/s40033-020-00231-4.
  • Ikpambese, K.K., Gundu, D.T., and Tuleun, L.T., “Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads,” J. King Saud Univ. - Eng. Sci. 28(1), 110–118, 2016, doi:10.1016/j.jksues.2014.02.001.
  • Sai Krishnan, G., Jayakumari, L.S., Ganesh Babu, L., and Suresh, G., “Investigation on the physical, mechanical and tribological properties of areca sheath fibers for brake pad applications,” Mater. Res. The author declares no conflict of interest.
  • Sai Krishnan, G., Ganesh Babu, L., Kumaran, P., Yoganjaneyulu, G., and Sudhan Raj, J., “Investigation of caryota urens fibers on physical, chemical, mechanical and tribological properties for brake pad applications,” Mater. Res. Express 7(1), 2019, doi:10.1088/2053-1591/ab5d5b.
  • Sai Krishnan, G., Ganesh Babu, L., Pradhan, R., and Kumar, S., “Study on tribological properties of palm kernel fiber for brake pad applications,” Mater. Res. Express 7(1), 2019, doi:10.1088/2053-1591/ab5af5.
  • Song, W., Park, J., Choi, J., Lee, J.J., and Jang, H., “Effects of reinforcing fibers on airborne particle emissions from brake pads,” Wear, 484–485, 2021, doi:10.1016/j.wear.2021.203996.
  • Pujari, S. and Srikiran, S., “Experimental investigations on wear properties of palm kernel reinforced composites for brake pad applications,” Def. Technol. 15(3), 295–299, 2019, doi:10.1016/j.dt.2018.11.006.
  • Ademoh, N.A., Boye, T.E., Olabisi, I., Ademoh, A., and Boye, E., “Development of asbestos-free automotive brake pad using ternary agro-waste fillers,” J. Multidis. Eng. Sci. Tech. 3, 5307-5323, 2016.
  • Hu, X., Wang, N., Pan, P., and Bai, T., “Performance evaluation of asphalt mixture using brake pad waste as mineral filler,” Constr. Build. Mater. 138, 410–417, 2017, doi:10.1016/j.conbuildmat.2017.02.031.
  • Ibukun Olabisi., A., “Development and Assessment of composite brake pad using pulverized cocoa beans shells filler,” Int. J. Mater. Sci. Appl. 5(2), 66, 2016, doi:10.11648/j.ijmsa.20160502.16.
  • Ruzaidi, C.M., Kamarudin, H., Shamsul, J.B., Bakri, A.M.M. Al, and Liyana, J., “Mechanical properties and morphology of palm slag, calcium carbonate and dolomite filler in brake pad composites,” Applied Mechanics and Materials, 2013, doi:10.4028/www.scientific.net/AMM.313-314.174.
  • Hassan, M.H., Sani, N., Faisal, A., Ayob, M., Wannik, W.B., Ayob, A.F., Syahrullail, S., Masjuki, H.H., and Ahmad, M.F., “The effect of boron friction modifier on the performance of brake pads,” Int. J. Mech. Mat. Eng. 7, 31-35, 2012.
  • Maleque, M.A., Ria Jaafar, T., Maleque, M., Atiqah, A., Talib, R., and Zahurin, H., “New natural fibre reinforced aluminium composite for automotive brake pad," Int. J. Mech. Mat. Eng. 7, 166-170, 2012.
  • Jeganmohan, S. and Sugozu, B., “Usage of powder pinus brutia cone and colemanite combination in brake friction composites as friction modifier,” Materials Today: Proceedings, Elsevier Ltd: 2072–2075, 2019, doi:10.1016/j.matpr.2019.09.070.
  • Jamasri, Rochardjo, H., Nawangsari, P., and Waskito, A.T., “Friction modifiers optimization on tribological properties of non-asbestos organic (Nao) brake pad by doe-taguchi method,” Tribol. Ind. 43(2), 310–320, 2021, doi:10.24874/ti.1044.01.21.04.
  • Oktem, H., Akincioglu, S., Uygur, I., and Akincioglu, G., “Friction-wear performance in environmentally friendly brake composites: A comparison of two different test methods,” Poly. Compos. 42, 4461–4477, 2021, doi: 10.1002/pc.26162.
  • Akincioglu, G., Akincioglu, S., Oktem, H., and Uygur, I. “Wear response of non asbestos brake pad composites reinforced with walnut shell dust,” J. Austr. Cer. Soc. 56, 1061–1072, 2020, doi:10.1007/s41779-020-00452-6.
  • Akincioglu, G., Oktem, Uygur, I., and Akincioglu, S., “Determination of friction-wear performance and properties of eco-friendly brake pads reinforced with hazelnut shell and boron dusts,” Arab. J. Sci. Eng. 43, 4727–4737, 2018, doi:10.1007/s13369-018-3067-8.
  • Akincioglu, G., Akincioglu, S., Oktem, H., and Uygur, I. “Experimental investigation on the friction characteristics of hazelnut powder reinforced brake pad,” Rep. in Mech. Eng. 2(1), 23-30, 2021, doi: 10.31181/rme200102023a.
  • Akincioglu, G., Akincioglu, S., Oktem, H., and Uygur, I. “Evaluation of the physical properties of hazelnut shell dust-added brake pad samples treated with cryogenic process,” J. Polytec. 22(3), 591-596, doi: 10.2339/politeknik.432033.
  • Akincioglu, G., Uygur, I., and Akincioglu, S., and Oktem, H., “A novel study of hybrid brake pad composites: new formulation, tribological behaviour and characterisation of microstructure,” Plast. Rubber Compos. 50(5), 2021, doi:10.1080/14658011.2021.1898881.
  • Martinez, A.M. and Echeberria, J., “Towards a better understanding of the reaction between metal powders and the solid lubricant Sb2S3 in a low-metallic brake pad at high temperature,” Wear 348–349, 27–42, 2016, doi:10.1016/j.wear.2015.11.014.
  • Xiao, Y., Zhang, Z., Yao, P., Fan, K., Zhou, H., Gong, T., Zhao, L., and Deng, M., “Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains,” Tribol. Int. 119, 585–592, 2018, doi:10.1016/j.triboint.2017.11.038.
  • Abhik, R., Umasankar, V., and Xavior, M.A., “Evaluation of properties for Al-SiC reinforced metal matrix composite for brake pads,” Procedia Engineering, Elsevier Ltd: 941–950, 2014, doi:10.1016/j.proeng.2014.12.370.
  • Stadler, Z., Krnel, K., and Kosmac, T., “Friction behavior of sintered metallic brake pads on a C/C-SiC composite brake disc,” J. Eur. Ceram. Soc. 27(2–3), 1411–1417, 2007, doi:10.1016/j.jeurceramsoc.2006.04.032.
  • Phairote, P., Plookphol, T., and Wisutmethangoon, S., “Design and development of a centrifugal atomizer for producing zinc metal powder,” Int. J. Appl. Phys. Math., 2012, doi:10.7763/ijapm.2012.v2.58.
  • Sallit, I., Richard, C., Adam, R., and Robbe-Valloire, F., “Characterization methodology of a tribological couple: metal matrix composite/brake pads,” Mat. Sci. 40, 169-188, 1998, doi: 10.1016/S1044-5803(98)00007-2.
  • Dadkar, N., Tomar, B.S., and Satapathy, B.K., “Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications,” Mater. Des. 30(10), 4369–4376, 2009, doi:10.1016/j.matdes.2009.04.007.
  • Satapathy, B.K., Bijwe, J., and Kolluri, D.K., “Assessment of fiber contribution to friction material performance using grey relational analysis (GRA),” J. Compos. Mater. 40(6), 2006, doi:10.1177/0021998305055200.
  • Chan, D. and Stachowiak, G.W., “Review of automotive brake friction materials: Automobile Engineering,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng 218(1), 2004.
  • Bijwe, J., “Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials - A review,” Polym. Compos. 18(3), 1997, doi:10.1002/pc.10289.
  • Chan, D. and Stachowiak, G.W., “Review of automotive brake friction materials,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, doi:10.1243/0954407041856773.
  • Mohanty, S. and Chugh, Y.P., “Development of fly ash-based automotive brake lining,” Tribol. Int. 40(7), 1217–1224, 2007, doi:10.1016/j.triboint.2007.01.005.
  • Kim, S.S., Hwang, H.J., Shin, M.W., and Jang, H., “Friction and vibration of automotive brake pads containing different abrasive particles,” Wear, 271(7–8), 1194–1202, 2011, doi:10.1016/j.wear.2011.05.037.
  • Manoharan, S., Suresha, B., Bharath, P.B., and Ramadoss, G., “Investigations on three-body abrasive wear behaviour of composite brake pad material,” Plast. Polym. Technol. 3, 2014.
  • Zhang, S.Y., Qu, S.G., Li, Y.Y., and Chen, W.P., “Two-body abrasive behavior of brake pad dry sliding against interpenetrating network ceramics/Al-alloy composites,” Wear 268(7–8), 939–945, 2010, doi:10.1016/j.wear.2009.12.004.
  • Ozturk, B. and Mutlu, T., “Effects of Zinc borate and fly ash on the mechanical and tribological characteristics of brake friction materials,” Tribol. Trans. 59(4), 2016, doi:10.1080/10402004.2015.1096984.
  • Malhotra, V.M., Valimbe, P.S., and Wright, M.A., “Effects of fly ash and bottom ash on the frictional behavior of composites,” Fuel 81(2), 2002, doi:10.1016/S0016-2361(01)00126-0.
  • Sugozu, B., “Tribological properties of brake friction materials containing fly ash,” Ind. Lubr. Tribol. 70(5), 902–906, 2018, doi:10.1108/ILT-04-2017-0100.
  • Vassilev, S. V. and Vassileva, C.G., “A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour,” Fuel, 86(10–11), 2007, doi:10.1016/j.fuel.2006.11.020.
  • Hee, K.W. and Filip, P., “Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings,” Wear, 259(7–12), 2005, doi:10.1016/j.wear.2005.02.083.
  • Singh, T., Patnaik, A., and Chauhan, R., "Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis," Mat. & Des. 89, 2016, doi: 10.1016/j.matdes.2015.10.045.
  • Bahari, S.A., Isa, K.H., and Kassim, M.A., "Investigation on hardness and impact resistance of automotive brake pad composed with rice husk dust," AIP Conf. Proc. 155, 2012, doi:10.1063/1.4732485.
  • Handa, Y., and Kato, T., "Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads," Trib. Trans. 39, 1996, doi: 10.1080/10402009608983537.
  • Dai, J., Teng, N., Shen, X., Liu, Y., Cao, L., Zhu, J., and Liu, X., “Synthesis of Biobased benzoxazines suitable for vacuum-assisted resin transfer molding process via ıntroduction of soft silicon segment,” Ind. Eng. Chem. Res. 57(8), 2018, doi:10.1021/acs.iecr.7b04716.
  • Lee, J., Lim, J.W., and Kim, M., “Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite,” Polym. Compos. 41(4), 1190–1202, 2020, doi:10.1002/pc.25445.
  • iddig, N.A., Binetruy, C., Syerko, E., Simacek, P., and Advani, S., A new methodology for race-tracking detection and criticality in resin transfer molding process using pressure sensors, J. Compos. Mater. 52(29), 4087–4103, 2018, doi:10.1177/0021998318774829.
  • Dammann, C. and Mahnken, R., “Simulation of a resin transfer molding process using a phase field approach within the theory of porous media,” Compos. Part A Appl. Sci. Manuf. 120, 2019, doi:10.1016/j.compositesa.2019.02.022.
  • Yilmaz, A.C. and Esen, M., “Improving Tribological performance of piston ring steel substrates by DLC/nano-crystalline diamond coating,” Arab. J. Sci. Eng., 2022, doi:10.1007/s13369-022-06660-5.
  • Akincioglu, G., Oktem, H., Uygur, I., and Akincioglu, S., “Determination of friction-wear performance and properties of eco-friendly brake pads reinforced with hazelnut shell and boron dusts,” Arab. J. Sci. Eng. 43(9), 2018, doi:10.1007/s13369-018-3067-8.
  • Singh, T., Patnaik, A., and Chauhan, R., “Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis,” Mater. Des. 89, 1335–1342, 2016, doi:10.1016/j.matdes.2015.10.045.
  • Sugozu, I., Can, I., Oner, C., and Bagirov, H., “Friction behavior of granite powder added brake pads,” Mater. Test. 57(7–8), 2015, doi:10.3139/120.110766.
  • Akincioglu, G., Akincioglu, S., Oktem, H., and Uygur, I. “Brake pad performance characteristic assessment methods,” Int. J. Auto. Sci. Tech. 5(1), 67-78, 2021, doi: 10.30939/ijastech..848266.