Magnetopriming enhance germination and seedling growth parameters of onion and lettuce seeds

Magnetopriming enhance germination and seedling growth parameters of onion and lettuce seeds

The main objective of this study was to improve seed quality by using magnetic field (MF) as a priming method to increase germination percentages (GP) and seedling emergence percentages (SEP) in onion and lettuce seeds. MF treatments on pre-hydrated seeds, significantly increased GP (up to 80% for onion, 87% for lettuce) and SEP (up to 76% for onion, 86% for lettuce) in both species. Magnetic treatments in other saying magnetopriming helped to increase germination and seedling emergence speed in treated seeds as well. The shortening of mean germination time allowed the treatments to establish uniform and well-developed seedlings. Our findings indicate that magnetopriming could be used as a pre-germination treatment before sowing.

___

  • Aladjadjiyan, A. (2002). Study of the influence of magnetic field on some biological characteristics of Zea mays. Journal of Central European Agriculture, 3(2), 89-94.
  • Aladjadjiyan, A., & Ylieva, T. (2003). Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.). J. Cent. Eur. Agr., 4, 132-137. Aladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys., 24(3); 321-324.
  • Aladjadjıyan, A. (2012). Physcial factors for plant growth stimulation improve food quality. In A. A. (Ed.), Food Production-Approaches, Challenges and Tasks (145-168). InTech. https://doi.org/10.5772/1870
  • Alexander, M.P., & Doijode, S.D. (1995). Electromagnetic field, a novel tool to increase germination and seedling vigour of conserved onion (Allium cepa L.) and rice (Oryza sativa L.) seeds with low viability. Plant Genetic Res. Newsletter, 104, 1-5.
  • Alvarez, J., Martinez, E., Florez, M., & Carbonell, V. (2021). Germination Performance and Hydro-Time Model for Magneto-Primed and Osmotic-Stressed Triticale Seeds. Rom. J. Phys, 66, 801.
  • Arujo, S.S., Paparella, S., Dondi, D., Bentivoglio, A,. Carbonera, D., & Balestrazzi, A. (2016). Physical methods for seed invigoration: Advantages and challenges in seed technology. Frontiers in Plant Science, 7(646), 1-12. Doi: https://doi.org/10.3389/fpls.2016.00646
  • Baghel, L., Kataria, S., & Guruprassad, K.N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybeaan. Bioelectromagnetics, 37, 455-470. https://doi.org/10.1002/bem.21988
  • Belyavskaya, N.A. (2004). Biological effects due to weak magnetic field on plants. Advances in Space Research, 34(7 SPEC. ISS.), 1566–1574. https://doi.org/10.1016/j.asr.2004.01.021
  • Bhardwaj, J., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67-73. https://doi.org/10.1016/j.plaphy.2012.05.008
  • Bilalis, D.J., Katsenios, N., Efthimiadou, A., Karkanis, A., Khah, E.M., & Mitsis, T. (2013). Magnetic field pre-sowing treatment as an organic friendly technique to promote plant growth and chemical elements accumulation in early stages of cotton. Australian Journal of Crop Science, 7(1), 46-50. https://search.informit.org/doi/10.3316/informit.142600685053880
  • Carbonell, M.V., Martinez, E., Florez, M., Maqueda, R., Lopez-Pintor, A., & Amaya, J.M. (2008). Magnetic field treatments improve germination and seedling growth in Festuca arundinacea Schreb. and Lolium perenne L. Seed Sci. Tech., 36(1), 31-37. https://doi.org/10.15258/sst.2008.36.1.03
  • De Micco, V., Paradiso, R., Aronne, G., De Pascale, S., Quarto, M., & Arena, C. (2014). Leaf anatomoy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. Scientific World Journal, 1-14. https://doi.org/10.1155/2014/428141
  • De Souza A., Garcia, D., Sueiro, L., Gilart, F., Porras, E., & Licea, L. (2006). Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics, 27, 247–257. https://doi.org/10.1002/bem.20206
  • De Souza, A., Sueiro, L., Gonzalez, L. M., Licea, L., Porras, E. P., & Gilart, F. (2008). Improvement of the growth and yield of lettuce plants by non-uniform magnetic fields. Electromagnetic Biology and Medicine, 27(2), 173-184. https://doi.org/10.1080/15368370802118605
  • Efthimiadou, A., Katsenios, N., Karkanis, A., Papastylianou, P., Triantafyllidis, V., Travlos, I., & Bilalis, D.J. (2014). Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. The Scientific World Journal, 1-6. https://doi.org/10.1155/2014/369745
  • Ellis, R. H., & Roberts, E. H. (1980). Improved equations for the prediction of seed longevity. Annals of Botany, 45(1), 13-30. https://doi.org/10.1093/oxfordjournals.aob.a085797
  • Feizi, H., Sahabi, H., Moghaddam, P. R., Shahtahmassebi, N., Gallehgir, O., & Amirmoradi, S. (2012). Impact of intensity and exposure duration of magnetic field on seed germination of tomato (Lycopersicon esculentum L.). Notulae Scientia Biologicae, 4(1), 116-120. https://doi.org/10.15835/nsb417324
  • Feizi, H., Salari, A., Kaveh, H., & Firuzi, Y. (2020). Investigation of static magnetic field durability treatment on seed and seedling features of mustard (Sinapis alba L.). Z. Arznei-Gewurzpfla, 24(2), 75-79.
  • Florez, M., Carbonell, M. V., & Martinez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59(1), 68-75. https://doi.org/10.1016/j.envexpbot.2005.10.006
  • Garcia Reina, F., Pascual, L.A., & Fundora, I.A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: Experimental Results. Bioelectromagnetics, 22, 596-602. https://doi.org/10.1002/bem.89
  • Ghanbarpouri, M., Ghahsareh, A. M., Attaabadi, M., & Hodaji, M. (2021). Effect Of Magnetic Treatment On Strong Cucumber (Cucumis Sativus L.) Transplant Production. Pakistan Journal of Agricultural Sciences, 58(2), 439-446. https://doi.org/10.21162/PAKJAS/21.9505
  • Jisha, K.C., Vijayakumari, K., & Puthur, J.T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant, 35(5), 1381-1396. https://doi.org/10.1007/s11738-012-1186-5
  • Jovičić‐Petrović, J., Karličić, V., Petrović, I., Ćirković, S., Ristić‐Djurović, J. L., & Raičević, V. (2021). Biomagnetic priming—possible strategy to revitalize old mustard seeds. Bioelectromagnetics, 42(3), 238-249. https://doi.org/10.1002/bem.22328
  • Heydecker, W., & Coolbear, P. (1977). Seed Treatments for improved performance, survey and attempted prornosi. Seed Sci. and Tech., 5, 353-425.
  • Hozayn, M., Amal, A., & Abdel-Rahman, H.M.H. (2015). Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). African Journal of Agricultural Research, 10(8), 859-867. https://doi.org/10.5897/AJAR2014.9383
  • Hozayn, M., Amal, A., & Zalama, M.T. (2018). Magneto-priming for improving germination, seedling attributes and field performance of barley (Hordeum vulgare L.) under salinity stress. Middle East Journal of Agriculture Research, 7(3); 1006-1022.
  • ISTA (2016). Retrieved from https://www.seedtest.org/en/
  • Ivankov, A., Naučienė, Z., Degutytė-Fomins, L., Žūkenė, R., Januškaitienė, I., Malakauskienė, A., Jakštas V., Ivanauskas L., Romanovskaja D., Šlepetiene A., Filatova I., Lyushkevich V., & Mildažiene V. (2021). Changes in Agricultural Performance of Common Buckwheat Induced by Seed Treatment with Cold Plasma and Electromagnetic Field. Applied Sciences, 11(10), 4391. https://doi.org/10.3390/app11104391
  • Kataria, S., Baghel, L., & Guruprasad, K.N. (2015). Acceleration of germination and early growth characteristics of soybean and maize after pre-treatment of seeds with static magnetic field. Int. J. Tropical Agri., 33, 985-992.
  • Kataria, S. (2017a). Role of reactive oxygen species in magnetoprimed induced acceleration of germination and early growth characteristics of seeds. In S. Singh, D. K. Tripathi, S. M. Prasad, V. P. Singh, & D. K. Chauhan (Eds.), Reactive Oxygen Species in Plants: Boon or Bane-Revisiting the Role of ROS (pp. 75-88). John Wiley & Sons. https://doi.org/10.1002/9781119324928.ch4
  • Kataria, S., Baghel, L., & Guruprasad, K.N. (2017b). Alleviation of adverse effects of ambient UV stress on growth and some potential physiological attributes in soybean (Glycine max) by seed pre-treatment with static magnetic field. Journal of Plant Growth Regulation, 36, 550-565. https://doi.org/10.1007/s00344-016-9657-3
  • Kataria, S., Baghel, L., & Guruprasad, K.N. (2017c). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agricultural Biotechnology, 10, 83-90. https://doi.org/10.1016/j.bcab.2017.02.010
  • Kubisz, L., Hołubowıcz, R., Gauza, M., LI, H., Hojan-Jezıerska, D., & Jaroszyk, F. (2012). Effect of low frequency magnetic field on germination of onion (Allium cepa L.) seeds. Acta Physica Polonica A, 1(121), 49-53. https://doi.org/10.15835/nbha4219131
  • Labes, M. M. (1966). A possible explanation for the effect of magnetic fields on biological systems. Nature, 211(5052), 968-968. https://doi.org/10.1038/211968a0
  • Latef, A. A. H. A., Dawood, M. F., Hassanpour, H., Rezayian, M., & Younes, N. A. (2020). Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology, 9(7). https://doi.org/10.3390/biology9070172
  • Martinez, E., Carbonell, M.V., Flórez, H., Amaya, J.M., & Maqueda, R. (2009). Germination of tomato seeds (Lycopersicon esculantum L.) under magnetic fields. Int. Agrophysics, 23, 44-50.
  • Mohammadi, R., & Roshandel, P. (2020). Ameliorative effects of a static magnetic field on hyssop (Hyssopus officinalis L.) growth and phytochemical traits under water stress. Bioelectromagnetics, 41(6), 403-412. https://doi.org/10.1002/bem.22278
  • Mousavizadeh, S. J., Sedaghathoor, S., Rahimi, A., & Mohammadi, H. (2013). Germination parameters and peroxidase activity of lettuce seed under stationary magnetic field. International Journal of Biosciences, 3(4), 199-207. http://dx.doi.org/10.12692/ijb/3.4.199-207
  • Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8), 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
  • Podleśna, A., Bojarszczuk, J., & Podleśny, J. (2019). Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. Minor). Journal of Plant Growth Regulation, 1-8. https://doi.org/10.1007/s00344-019-09920-1
  • Razmjoo, J., & Alinian, S. (2017). Influence of magnetopriming on germination, growth, physiology, oil and essential contents of cumin (Cuminum cyminum L.). Electromagnetic Biology and Medicine, 36, 325-329. https://doi.org/10.1080/15368378.2017.1373661
  • Rochalska, M., & Orzeszko-Rywka, A. (2005). Magnetic field treatment improves seed performance. Seed Sci. and Tech., 33, 669-674. https://doi.org/10.15258/sst.2005.33.3.14
  • Sen, A., & Alikamanoglu S. (2016). Interactive effect of static magnetic field and abiotic stressors on growth and biochemical parameters of germinating wheat cultivars. European Journal of Biology, 75(1), 19-38.
  • Shine, M.B., Guruprasad, K., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics, 32, 474–484. https://doi.org/10.1002/bem.20656
  • Shine, M.B., Kataria, S., Guruprasad K.N., & Anand, A. (2017). Enhancement of maize seeds germination by magnetopriming in perspective with reactive oxygen species. Journal of Agriculture and Crop Research, 5(4), 66-76.
  • Soltani, F., & Kashi, A. (2004). Effect of magnetic field on lettuce seed germination and its growth. Iranian Horticultural Science and Technology, 5,101-108.
  • Soltani, F., Kashi, A., & Arghavani, M. (2006). Effect of magnetic field on Asparagus officinalis L. seed germination and seedling growth. Seed Sci. and Tech., 34(5), 349-353. https://doi.org/10.15258/sst.2006.34.2.10
  • Sung, Y., Cantliffe, D.J., & Nagata, R.T. (1998). Using a puncture test to identify the role of seed covering on thermotolerant lettuce seed germination. J. Amer. Soc. Hort. Sci., 123,1102-1106. https://doi.org/10.21273/JASHS.123.6.1102
  • Teixeira Da Silva, J.A., & Dobranszki, J. (2015). How do magnetic fields affect plants in vitro? In Vitro Cell Dev. Biol-Plant., 51,233-240. https://doi.org/10.1007/s11627-015-9675-z
  • Thomas, S., Anad, A., Chinnusamy, V., Dahuja, A., & Basu, S. (2013). Magneto-priming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physio. Plant, 35,3401-3411. https://doi.org/10.1007/s11738-013-1375-x
  • TUIK (2022). Retrieved from https://www.tuik.gov.tr
  • Vashisth, A., & Nagarajan, S. (2010). Effect on germination and early growth characteristic in sunflower (Hellianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 167,149-156. https://doi.org/10.1016/j.jplph.2009.08.011
  • Vashisth, A., Meena, N., & Krishnan, P. (2021). Magnetic field affects growth and yield of sunflower under different moisture stress conditions. Bioelectromagnetics, 42(6),473-483. https://doi.org/10.1002/bem.22354
  • Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology, Special Issue,179-186.
  • Yinan, Y., Yuan, L., Yongqing, Y., & Chunyang, L. (2005). Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environ. Exp. Bot., 54 (3), 286-294. https://doi.org/10.1016/j.envexpbot.2004.09.006
  • Zalama, M. T., & Fathalla, F. H. (2020). Enhancement Onion Seed Germination and Seedling Vigor Traits through Magneto-Priming Techniques. Journal of Plant Production, 11(12), 1529-1537. https://doi.org/10.21608/jpp.2020.149826
  • Ziaf, K., Amjad, M., Ghani, M. A., Ahmad, I., Ayub, M., Sarwar, M., Iqbal, Q., & Nawaz, M. A. (2022). Comparatıve Efficacy of Magnetic Field Seed Treatment and Priming in Improving Growth and Productivity of Okra. Journal of Animal & Plant Sciences, 32(1),84-90. https://doi.org/10.36899/JAPS.2022.1.0405
International Journal of Agriculture Environment and Food Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Gültekin ÖZDEMİR
Sayıdaki Diğer Makaleler

A study on bitter gourd (Momordica charantia L.) callogenesis optimization based on hormone balance and explant types

Tugce OZSAN KILIC, Ahmet Naci ONUS

Exploring the relationship between leaf water potential, defoliation, and grape berry physical properties of Merlot (Vitis vinifera L.) grapevine

Serkan CANDAR, İlknur KORKUTAL, Elman BAHAR, Fatma Betül AKTAŞ

Chemical composition of meat from different species of animals

Büşra YARANOĞLU, Muhittin ZENGİN, Makbule GÖKÇE, Özlem VAROL AVCILAR, Beşir Berhun POSTACI, Çiğdem ERDOĞAN, Emre ODABAŞ

Effect of phosphorus fertilization on phenolic compounds and antioxidant activity in Galanthus elwesii Hook.

Ebru BATI AY, Şevket Metin KARA, Muhammed Akif AÇIKGÖZ

Environmental effects of tourism activities in Niksar Çamiçi Plateau in the context of sustainable tourism: a qualitative research

Cemil GÜNDÜZ, Onur ATAK

Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities

Asliye KARAASLAN

The utilization of vaporized ethyl pyruvate for decontamination of lettuce from E. coli O157:H7

Gülsüm UÇAK ÖZKAYA

Determination of the tolerance of physiological, morphological, and yield parameters of landrace durum wheat (Triticum durum Desf.) to high-temperature stress

Mustafa OKAN, Aydın ALP, Kamil HALİLOĞLU

Comparison of physical and quality characteristics of silage maize and silage sorghum under deficit irrigation conditions

Mualla KETEN GÖKKUŞ, Hasan DEGİRMENCİ

Magnetopriming enhance germination and seedling growth parameters of onion and lettuce seeds

Mustafa Emre SARI, İbrahim DEMİR, Kutay YILDIRIM, Nurcan MEMİŞ