Edible Film Production from Effluents of Potato Industry Incorporated with Origanum onites Volatile Oils and Changes Its Textural Behaviors under High Hydrostatic Pressure

Development and characterization of edible film incorporated with Origanum onites volatile oil from the effluents of potato industry, determination of changes on its textural properties of force and elongation at break (EAB) under high hydrostatic pressure (HHP) in addition to its antimicrobial effect against Escherichia coli O157:H7 and Salmonella Enteritis were prompted. The optimum operational conditions under HHP for maximum force and EAB were achieved with 350 MPa pressure, 8 min operational time, and addition of 45 μL O. onites volatile oil concentration (VOC). Inhibition zones for S. Enteritis and E. coli O157:H7 at the optimum conditions were 1.7 ± 0.109 and 2.386 ± 0.07 cm, respectively. Textural properties of force and EAB of the HHP-processed films ranged from 2.27 ± 0.52 to 5.23 ± 0.79 N, and from 7.47 ± 1.68 to 15.71 ± 0.65 mm, respectively. Thermal transition of the edible film was observed at 86.77°C for 7.19 min. The microscopic observation of the film surfaces shoowed homogenous and translucent structure. The improved textural properties with HHP and VOC revealed that it carries a potential to be used as a food packaging material.

___

  • Acar, I., Pozan, G.S., Ozgumus, S. (2008). Thermal oxidative degradation kinetics and thermal properties of poly (ethylene terephthalate) modified with poly (lactic acid). Journal of Applied Polymer Science, 109: 2747–2755. Doi: https://doi.org/10.1002/app.28142
  • Aggarwal, P., Dollimore, D. (1996). A comparative study of the degradation of different starches using thermal analysis. Talanta, 43: 1527–1530. Doi: https://doi.org/10.1016/00399140(96)01930-3
  • Andrade-Ochoa, S., Nevárez-Moorillón, G.V., Sánchez-Torres, L.E., Villanueva-García, M., Sánchez-Ramírez, B.E., Rodríguez-Valdez, L.M., Rivera-Chavira, B.E. (2015). Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complementary Medicine and Therapies, 15(1): 332-343. Doi: 10.1186/s12906-015-0858-2.
  • Anonymous. (2019). https://www.potatopro.com/world/potato-statistics. (Accessed on 13.03.2019)
  • Azcan, N., Kara, M., Asilbekova, D.T., Ozek, T., Baser, K.H.C. (2000). Lipids and essential oil of Origanum onites. Chemistry of Natural Compounds, 36(2):132-136.
  • Barzegar, H., Azizi, M.H., Barzegar, M., Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films. Carbohydrate Polymer, 110: 26-31. Doi: https://doi.org/10.1016/j.carbpol.2014.03.092
  • Borah, P.R., Das, P., Badwaik, L.S. (2017). Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrasonic Sonochemistry, 36: 11-19. Doi: https://doi.org/10.1016/j.ultsonch.2016.11.010
  • Bouyahya, A., Dakka, N., Talbaoui, A., Et-Touys, A., El-Boury, H., Abrini, J., Bakri, Y. (2017). Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic Oregano (Origanum compactum Benth). Indian Crop Production, 108 : 729–737. Doi: https://doi.org/10.1016/j.indcrop.2017.07.03
  • Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94(3): 223-253. Doi: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  • Castillo, L.A., Farenzena, S., Pintos, E., Rodríguez, M.S., Villar, M.A., García, M.A., López, O.V. (2017). Active films based on thermoplastic corn starch and chitosan oligomer for food packaging applications. Food Packaging and Shelf Life, 14: 128-136. Doi: https://doi.org/10.1016/j.fpsl.2017.10.004
  • Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A. (2017). Preparation and characterization of a novel bionano composite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymer, 157, 167-175. Doi: https://doi.org/10.1016/j.carbpol.2016.09.062
  • Chauhan, A.K., Kang, S.C. (2014). Thymol disrupts the membrane integrity of Salmonella ser. Typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Research in Microbiology, 165(7): 559–565. Doi: https://doi.org/10.1016/j.resmic.2014.07.001
  • Condés, M.C., Añón, M.C., Mauri, A.N. (2015). Amaranth protein films prepared with high-pressure treated proteins. Journal of Food Engineering, 166: 38-44. Doi: https://doi.org/10.1016/j.foodhyd.2015.01.026
  • Dadalioğlu, I., Evrendilek, G.A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agriculture and Food Chemistry, 52: 8255-8260. Doi: https://dio.org/10.1021/jf049033e
  • De Kruijf, N., van Beest, M., Rijk, R., Sipilainen-Malm, T., Paseiro Losada, P., De Meulenaer, B. (2002). Active and intelligent packaging: applications and regulatory aspects. Food Additives and Contaminants, 19: 144–62. Doi: https://doi.org/10.1080/02652030110072722
  • Deng, Y., Jin, Y., Luo, Y., Zhong, Y., Yue, J., Song, X., Zhao, Y. (2014). Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules. Journal of Cereal Science, 60: 302-310. Doi: https://doi.org/10.1016/j.jcs.2014.06.005
  • Ehivet, F.E., Min, B., Park, M.K., Oh, J.H. (2011). Characterization and antimicrobial activity of sweet potato starch‐based edible film containing origanum (Thymus capitatus) oil. Journal of Food Science, 76(1): 178-184. Doi: https://doi.org/10.1111/j.1750-3841.2010.01961.x
  • Farkas, D.F., Hoover, D.G. (2000). High pressure processing. Journal of Food Science, 65: 47-64. Doi: https://doi.org/10.1111/j.1750-3841.2000.tb00618.x
  • Feng, M., Yu, L., Zhu, P., Zhou, X., Liu, H., Yang, Y., Zhou, C., Gao, C., Bao, X., Chen, P. (2018). Development and preparation of active starch films carrying tea polyphenol. Carbohydrate Polymers, 196: 162-167. Doi: https://doi.org/10.1016/j.carbpol.2018.05.043
  • Flores, S., Haedo, A.S., Campos, C., Gerschenson, L. (2007). Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. European Food Research Technology, 225(3-4): 375–384. Doi: https://doi.org/10.1007/s00217-006-0427-5
  • Gontard, N., Guilbert, S., Cuq, J.-L. (1992). Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57: 190-195,199. Doi: https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  • Grossi, A., Søltoft-Jensen, J., Knudsen, J.C., Christensen, M., Orlien, V. (2012). Reduction of salt in pork sausages by the addition of carrot fibre or potato starch and high pressure treatment. Meat Science, 92: 481-489. Doi: https://doi.org/10.1016/j.meatsci.2012.05.015
  • Guinesi, L.S., da Roz. A.L., Corradini, E., Mattoso, L.H.C., Teixeira, E.D.M., Curvelo, A.A.D.S. (2006). Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochimica Acta 447: 190–196. Doi: https://doi.org/10.1016/j.tca.2006.06.002
  • Kim, S., Yang, S.Y., Chun, H.H., Song, K.B. (2018). High hydrostatic pressure processing for the preparation of buckwheat and tapioca starch films. Food Hydrocolloids, 81: 71-76. Doi: https://doi.org/10.1016/j.foodhyd.2018.02.039
  • Knowles, J.R., Roller, S., Murray, D.B., Naidu, A.S. (2005). Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella Enterica serovar Typhimurium. Applied and Environmental Microbiology, 71(2) : 797–803. Doi: https://doi.org /10.1128/AEM.71.2.797-803.2005
  • Kot, A.M., Pobiega, K., Piwowarek, K., Kieliszek, M., Błażejak, S., Gniewosz, M., Lipińska, E. (2020). Biotechnological methods of management and utilization of potato industry waste-a Review. Potato Research, 1-17. Doi: https://doi.org/10.1007/s11540-019-09449-6
  • Lambert, R.J.W., Skandamis, P.N., Coote, P.J., Nychas, G.-J.E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3): 453-462. Doi: https://doi.org/10.1046/j.1365-2672.2001.01428.x
  • Li, G.-X., Liu, Z.-Q. (2009). Unusual antioxidant behavior of α- and γ-terpinene in protecting methyl linoleate, DNA, and erythrocyte. Journal of Agriculture and Food Chemistry, 57(9): 3943–3948. Doi: https://doi.org/10.1021/jf803358g
  • Liu, H., Xie, F., Yu, L., Chen, L., Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34: 1348-1368. Doi: https://doi.org/10.1016/j.progpolymsci.2009.07.001
  • Liu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., Li, X. (2013). Thermal degradation and stability of starch under different processing conditions. Starch-Starke, 65: 48-60. Doi: https://doi.org/10.1002/star.201200198
  • Lopez-Rubio, A., Fabra, M.J., Martinez-Sanz, M., Mendoza, S., Vuong, Q.V. (2017). Biopolymer-based coatings and packaging structures for improved food quality. Journal of Food Quality, 7: 1-3. Doi: https://doi.org/10.1155/2017/2351832
  • Mahomoodally, M.F., Zengin, G., Aladag, M.O., Ozparlak, H., Diuzheva, A., Jekő, J., Cziáky, Z., Aumeeruddy, M.Z. (2019). HPLC-MS/MS chemical characterization and biological properties of Origanum onites extracts: a recent insight. International Journal of Environmental Health Resources, 29(6): 607-621. Doi: https://doi.org/10.1080/09603123.2018.1558184
  • Min, B.J., Oh, J.-H. (2009). Antimicrobial activity of catfish gelatin coating containing origanum (Thymus capitatus) oil against gram-negative pathogenic bacteria. Journal of Food Science, 74: 143–148. Doi: https://doi.org/10.1111/j.1750-3841.2009.01115.x
  • Moreno, O., Cárdenas, J., Atarés, L., Chiralt, A. (2017). Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, 178: 147-158. Doi: https://doi.org/10.1016/j.carbpol.2017.08.128
  • Murthy, M.S.R.C., Swaminathan, T., Rakshit, S.K., Kosugi, Y. (2000). Statistical optimization of lipase catalyzed hydrolysis of methyl oleate by response surface methodology. Bioprocessing Engineering, 22: 35-39. https://doi.org/10.1007/PL00009097
  • Nandane, A.S., Jain, R.K. (2018). Optimization of formulation and process parameters for soy protein-based edible film using response surface methodology. Journal of Packaging Technology Research, 2(3): 203-210. Doi: https://doi.org/10.1007/s41783-018-0045-2
  • Othman, S.H., Edwal, S.A.M., Risyon, N.P., Basha, R.K., Talib, R.A. (2017). Water sorption and water permeability properties of edible film made from potato peel waste. Food Science and Technology, 37: 63-70. Doi: http://dx.doi.org/10.1590/1678-457x.30216
  • Ozdemir, M., Floros, J.D. (2008). Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. Journal of Food Engineering, 86(2): 215-224. Doi: https://doi.org/10.1016/j.jfoodeng.2007.09.028
  • Park, S.B., Lih, E., Park, K.S., Joung, Y.K., Han, D.K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68: 77-105. Doi: https://doi.org/10.1016/j.progpolymsci.2016.12.003
  • Pathak, P.D., Mandavgane, S.A., Puranik, N.M., Jambhulkar, S.J., Kulkarni, B.D. (2018). Valorization of potato peel: a biorefinery approach. Critical Reviews in Biotechnology, 38(2): 218-230. Doi: https://doi.org/10.1080/07388551.2017.1331337
  • Peterson, J.D., Vyazovkin, S., Wight, C.A. (2001). Kinetics of the thermal and thermo-oxidative degradation of polystyrene: polyethylene and poly(propylene). Macromolecular Chemistry and Physics, 202: 775-784. Doi: https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G
  • Quintavalla, S., Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62: 373–80. Doi: https://doi.org/10.1016/S0309-1740(02)00121-3
  • Razavi, S.M.A., Amini, A.M., Zahedi, A.Y. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43: 290-298. Doi: https://doi.org/10.1016/j.foodhyd.2014.05.028
  • Rice, E.W., Baird, R.B., Eaton, A.D. (2005). Standard methods for the examination of water and wastewater, 23rd ed. American Public Health Association, American Water Works Association, Water Environment Federation.
  • Salleh, E., Muhammad, II., Pahlawi, Q.A. (2014). Spectrum activity and lauric acid release behaviour of antimicrobial starch-based film. Procedia Chemistry, 9: 11-22. Doi: https://doi.org/10.1016/j.proche.2014.05.003
  • Sevindik, E., Aydin, S., Kurtoglu, C., Tin, B. (2019). Evaluation of essential oil composition of Origanum onites L. (lamiaceae) plant and antifungal activity on some strong pathogen fungi. Afs-Advances in Food Science, 2019, 32-35
  • Seydim, A.C., Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5): 639-644. Doi: https://doi.org/10.1016/j.foodres.2006.01.013
  • Simonin, H., Guyon, C., Orlowska, M., de Lamballerie, M., Le-Bail, A. (2011). Gelatinization of waxy starches under high pressure as influenced by pH and osmolarity: Gelatinization kinetics, final structure and pasting properties. LWT- Food Science and Technology, 44: 779–786. Doi: https://doi.org/10.1016/j.lwt.2010.07.002
  • Soares, R.M.D., Lima, A.M.F., Oliveira, R.V.B., Pires, A.T.N., Soldi, V. (2005). Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polymer Degradation and Stability, 90: 449–454. Doi: https://doi.org/10.1016/j.polymdegradstab.2005.04.007
  • Torres, J.A., Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1-2): 95-112. Doi: https://doi.org/10.1016/j.jfoodeng.2004.05.066
  • Valero, M., Francés, E. (2006). Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth. Food Microbiology, 23(1): 68-73. Doi: https://doi.org/10.1016/j.fm.2005.01.016
  • Xu, J., Zhou, F., Ji, B.-P., Pei, R.-S., Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3): 174-179. Doi: https://doi.org/10.1111/j.1472-765X.2008.02407.x