Taşıtlarda Katlanabilir Koltuk Sistemleri için Selonoid Aktüatör Tasarım ve Analizi

Bu çalışmada motorlu araçlar için koltuk kilidi aktüatörleri ele alınmıştır. Genel olarak koltuk kilitleri, elektrikli ve mekanik olarak tahrik edilen iki modelden oluşurlar. Bu çalışmada elektrikli koltuk kilitleri üzerine odaklanılmıştır. Elektrikli koltuk kilitlerinde tahrik sistemleri için elektrik motorlu ve selonoid aktüatörlü olmak üzere iki yöntem mevcuttur. Bunun yanında birçok uygulamada koltuk kilidini açmak için elektrik motorlarının kullanıldığı görülmüştür. Koltuk kilidini tahrik etmek için elektrik motoru ve selonoid aktüatör modelleri incelenmiştir. Elektrikli koltuk kilidi için elektriksel ve mekanik tasarım gereksinimleri, otomotiv ana sanayi şartnameleri ve yasal regülasyonlar üzerinden ele alınmıştır. Elektrikli koltuk kilidi için mekanik gereksinimler, elektrik motoru ve selonoid aktüatör modellerinde benzerdir. Diğer taraftan, Elektrikli koltuk kilidi için elektriksel gereksinimler, elektrik motoru ve selonoid aktüatör arasında birçok farklılık göstermektedir. Elektrikli koltuk kilidi için sınır şartlar ve tasarım ile test kriterleri düşünüldüğünde, tahrik yönteminde selonoid aktüatör kullanımı, maliyet ve tasarım konuları açısından elektrik motoruna göre birçok avantaj sağlamaktadır. Elektrikli bir koltuk kilit mekanizmasının fonksiyonunu yerine getirebilmesi için gerekli olan tahrik kuvveti ve deplasmanı müşteri şartnameleri incelenerek tayin edilmiştir. Bu çalışmada, Ansys Maxwell ortamında, sonlu elemanlar yöntemi kullanılarak, selonoidin tasarım kriterlerinde belirlenen bir süre dahilinde taşıyıcı hareket kolunun deplasmanı ve uyguladığı kuvvet analiz edilmeye çalışılmıştır.  Analiz çalışmalarında Taguchi’nin deney tasarım yöntemi kullanılarak kritik tasarım parametrelerinin belirlenmesinin ardından, ihtiyaç duyulan tasarım kriterlerini sağlayabilmesi için uygun tasarım modeli seçilerek çalışma tamamlanmıştır. 

Design and Analysis of Solenoid Actuator for Vehicle Foldable Seat Structure

This study presents the seat latch actuators for the vehicle. There are generally two types of seat latch actuators which are electrical seat latch and mechanical seat latch. Electrical seat latch type was analyzed in this study. The structures of electrical seat latch actuator were defined as powered by electric motor and powered by solenoid. Besides, most of application for electrical seat latch uses the electric motor (brush electric motor) to actuate/open the latch. The types of electric motor and solenoid actuator were investigated.  The design requirement, original equipment manufacturer specification and formal regulations show that mechanical and electrical requirements for electrical seat latch. The mechanical requirements are same for electric motor and solenoid actuator. On the other hand, electrical requirements for electrical seat latch show a lot of difference between electric motor and solenoid actuator. Therefore, using a solenoid actuator has more advantages than using electric motor to open the latch in terms of cost and design. The required actuation force and displacement to open the seat latch mechanism was defined by customer specifications. In terms of the displacement and produced force by solenoid, the mover (core) behavior of solenoid was investigated in the case of the limited duration of analysis on the Ansys Maxwell environment according to design constraints and criteria. The critical design parameters were determined by using Taguchi’s design of experiment method. Then suitable solenoid model was determined for providing the desired design criteria. 

___

  • Reference1 Honda Motor Co. Ltd., Vehicle Seat Latch Striker and Assist Handle, US8066328B2, 2011.
  • Reference2 Solmaz E., Akbulut U., and Yıldız M.E., Adapting A Latch Mechanism to Whole Seat Frames and Releasing Systems, OTEKON2014, 7th Automotive Technologies Congress, Bursa, Turkey, 2014
  • Reference3 Porter Group LLC., Vehicle Seat Latch, US007431371B2, 2008.
  • Reference4 Hyundai Motor Company, Seat Latch Structure, US008672386B2, 2014.
  • Reference5Austem Co., Ltd., Latch Assembly for Vehicle Seat, US007959205B2, 2011.
  • Reference6 Johnson Controls Technology Company, Two Way Positive Locking Latch, US006908137B2, 2015.
  • Reference7 Magna Closures S.p.a., Electrical Vehicle Latch, US20140175813A1, 2014.
  • Reference8 Bur, A., Dierauer, P., and Ricks, L., Honeywell’s Automotive Door Latch Design is Ideal for Corporate Latch Strategy, SAE-2003-01-1190, pp. 1-8., 2003.
  • Reference9 Udriste, D. and Negrus, E., Construction and Kinematics of Automotive Side Door Latch Mechanisms, SAE-2005-01-0881, pp. 1-7, 2003.
  • Reference10 Obata S., Kimura K., and Saito Y., Development of Functional Force Solenoid Actuator, IEEE, Mechatronics-REM, pp. 14-19, Paris, 2012
  • Reference11 Hüner E., Aküner M.C., and Demir U., A New Approach in Application and Design of Torodial Axial-Flux Permanent Magnet Open-Slotted NN Type (TASPMOS-NN) Motor, Tehnički vjesnik 22, 5, 1193-1198, 2015.
  • Reference12 Obata S., and Haneyoshi T., Saito Y., New Linear Solenoid Actuator for Humanoid Robot, IEEE, Mechatronics, pp. 367-370, Tokyo, 2014.
  • Reference13 Obata S., A, Basic Electromagnetic Theory for Controlling Solenoid Actuators, IEEE, Mechatronics, pp. 400-405, Tokyo, 2014.
  • Reference14 Meng F., Zhang H., Cao D., and Chen H., System Modeling and Pressure Control of a Clutch Actuator for Heavy-Duty Automatic Transmission systems, IEEE Transaction on Vehicular Technology, Vol.65, No.7, pp. 4865-4874, 2016.
  • Reference15 Nagai S., Nozaki T., and Kawamura A., Real-time Position Sensorless Estimation of Position and Force of Solenoid Actuator for Haptic Devices. Power Electronics and Applications (EPE'15 ECCE-Europe), 17th European Conference on , pp. 1-9, 2015.
  • Reference16 Nagai S., and Kawamura A., Realization of Bilateral Control by Compact Solenoid Actuators without Position and Force Sensors, IEEE Advanced Motion Control, pp. 1-6, New Zealand, 2016.
  • Reference17 Nagai S., Nozaki T., and Kawamura A., Environmental Robust Position Control for Compact Solenoid Actuators by Sensorless Simultaneous Estimation of Position and Force, IEEE Transaction on Industrial Electronics, Vol.63, No.8, pp. 5078-5086, 2016.
  • Reference18 Li C., Yang H., Jenkins L.L., Dean R., Flowers G.T. and Hung Y., Enhanced-Performance Control of an Electromagnetic Solenoid System Using a Digital Controller, IEEE Transaction on Control System Technology, Vol.24, No.5, pp. 1805-1811, 2016.
  • Reference19 Doeuff R. L. and Zaim M. H., Rotating Electrical Machines, Chapter 1, Edition 1, Wiley, 2010.
  • Reference20 European Regulations related to Crash Testing, Uniform provisions concerning with the approval of vehicles with regard to seats, their anchorages and any head restraints. ECE R-17, Reg. 17 - Rev.4, 2002.
  • Reference21 Jaguar Land Rover Limited – Engineering Standard, Electromagnetic Compatibility Specification For Electrical/Electronic Components and Subsystems. JLR-EMC-CS V1.0 Amendment 4., 2013.
  • Reference22 Demir, U., and Aküner, M.C., Using Taguchi Method in Defining the Critical Rotor Pole Data of LSPMSM Considering the Power Factor and Efficiency, Tehnički vjesnik 24, 2, 347-353, 2017.