Makine Öğrenmesi ile Kısa ve Elemental Analiz Kullanarak Katı Yakıtların Üst Isı Değerinin Tahmin Edilmesi

Kısa ve elemental analiz kullanılarak yüksek ısı değerinin (HHV) öngörülmesi, bir yakıtın karakteristik niteliğini anlamak için önemli bir prosedürdür. Araştırmalar, HHV değeri ile bu analizler arasındaki ilişkiyi açıklamak için denklemler oluşturma çabasını ortaya koymuştur. Ancak uygulanan yöntemler genellikle sadece basit istatistiksel analizleri içermektedir, bu nedenle kısmen başarılı sayılabilir. Bu makalede, bu tahmin sorununa makine öğrenme perspektifinden yaklaşılmaktadır, farklı türdeki malzemelerin kısa ve elemental analizini kullanarak HHV'yi tahmin etmek için dört makine öğrenme yöntemi, yani doğrusal regresyon, polinom regresyonu, karar ağacı regresyonu ve destek vektör regresyonunu kullanılmıştır. Kullanılan veri seti literatürdeki farklı kaynaklardan temin edilerek, kategorilere ayrılmış; sonuçta elde edilen kategoriler, mümkün olduğunca doğru tahmin modelleri oluşturmak için makine öğrenme modellerine beslenecek girdiler olarak kullanılmıştır. Önerilen yöntemlerin performansları k-katlı çapraz doğrulama tekniğiyle değerlendirilerek, her yöntemin performans değerleri hem tahmin doğruluğu hem de hesaplama karmaşıklığı açısından tartışılmıştır.

Machine learning based approach for predicting of higher heating values of solid fuels using proximity and ultimate analysis

Prediction of higher heating value (HHV) using proximity and ultimate analysis is an important procedure for understanding the characteristic attribute of a fuel.  Researches put effort to come up with equations to explain the relationship between the HHV value and those analyses. But conducted methods usually included only simple statistical analysis, thus they were partially effective to use in a practical manner. In this paper we approach this prediction problem from the machine learning perspective, we employ four machine learning methods, i.e. linear regression, polynomial regression, decision tree regression and support vector regression to predict HHV using proximity and ultimate analysis of different type of materials. Data set used is collected from literature and is categorized, where the resulting categories are used as features to be fed to the machine learning models to create prediction models as accurate as possible. Performances of the proposed methods are evaluated with k-fold cross-validation technique and each method’s pros and cons are discussed for both prediction accuracy and computational complexity.

___

  • Selvig WA, G. I., “Calorific value of coal,” Chem. coal Util., vol. 1, p. 139, 1945.
  • Strache H, L. R., “Kohlenchemie,” Akad. Verlagsgesellschaft, p. 476, 1924.
  • Hosokai, S., Matsuoka, K., Kuramoto, K., and Suzuki, Y., “Modification of Dulong’s formula to estimate heating value of gas, liquid and solid fuels,” Fuel Process. Technol., vol. 152, pp. 399–405, 2016.
  • Rd, M. and Md, H., “Mass-fraction of oxygen as a predictor of HHV of gaseous, liquid and solid fuels,” Energy Procedia, vol. 142, pp. 4124–4130, 2017.
  • Matin, S. S. and Chelgani, S. C., “Estimation of coal gross calorific value based on various analyses by random forest method,” Fuel, vol. 177, pp. 274–278, 2016.
  • Channiwala SA and Parikh PP., “A unified correlation for estimating HHV of solid, liquid and gaseous fuels.,” Fuel, vol. 81, pp. 1051–63, 2002.
  • Ng, A. Y., “Preventing Overfitting of Cross-Validation Data,” in ICML ’97 Proceedings of the Fourteenth International Conference on Machine Learning, 1997, pp. 245–253.
  • Podgorelec, V. and Zorman, M., “Decision Tree Learning,” Encycl. Complex. Syst. Sci., pp. 1–28, 2015.
  • Bertsimas, D. and Dunn, J., “Optimal classification trees,” Mach. Learn., vol. 106, no. 7, pp. 1039–1082, 2017.
  • Chih-Wei Hsu, Chih-Chung Chang, and C.-J. L., Chih-Wei Hsu, Chih-Chung Chang, Lin, C.-J., Chih-Wei Hsu, Chih-Chung Chang, and C.-J. L., Chih-Wei Hsu, Chih-Chung Chang, and Lin, C.-J., “A Practical Guide to Support Vector Classification,” BJU Int., vol. 101, no. 1, pp. 1396–1400, 2008.
  • Noble, W. S., “What is a support vector machine?,” Nat. Biotechnol., vol. 24, no. 12, pp. 1565–1567, 2006.
  • Elmaz, F., Yücel, Ö., and Mutlu, A. Y., “Evaluating the Effect of Blending Ratio on the Co-Gasification of High Ash Coal and Biomass in a Fluidized Bed Gasifier Using Machine Learning,” Mugla J. Sci. Technol., vol. 5, no. 1, pp. 1–15, Jun. 2019.
  • Mutlu, A. Y. and Yucel, O., “An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification,” Energy, vol. 165, pp. 895–901, Dec. 2018.
  • Xu, M., Watanachaturaporn, P., Varshney, P. K., and Arora, M. K., “Decision tree regression for soft classification of remote sensing data,” Remote Sens. Environ., vol. 97, no. 3, pp. 322–336, 2005.