Savaş tankı namlu yükseliş açısı tahrik sistemi stabilizasyonu ve DOB-temelli bozucu dışlama

Savaş tanklarındaki son yıllardaki gelişmeler kullanılan kontrol sistemlerini daha önemli hale getirmiştir. Bu araçların savaş alanında hareket halinde olması, bir hedefe ateş etme sırasında durmak yerine hareket esnasında ateş etmelerini gerekli kılmaktadır. Bu gereklilik, tank gövdesi hareketlerinin  namluya olan etkisini minimize eden silah kontrol sistemi ile sağlanabilir. Bu stabilizasyon işlevi için namlu üzerine monte edilen jiroskoptan alınan açısal konumun geri beslemesiyle çalışan kapalı-çevrim servo kontrol sistemleri kullanılır. İkinci nesil kontrol sistemlerinde, tank gövdesinin hareketi nedeniyle oluşan bozucu etkilere karşı tareti daha hassas ve hızlı kılan, ileri beslemeli kontrol için ekstra bir jiroskop daha kullanılır. Bu makalede ise tankın hareketi nedeniyle oluşan bozucu etkilerin ölçülmesi ihtiyacını ortadan tamamen kaldıran bir 'bozucu etki gözleyicisi' kullanılmaktadır. Tasarlanan gözleyici sayesinde bozucu etkinin hatasız olarak ölçülmesi ve ileri besleme kontrol ile elimine edilmeye çalışılması gerekliliği ortadan kalkmaktadır. 

Stabilization and DOB-based disturbance rejection for MBT gun-barrel elevation drive

Control systems for main battle tanks become more important while the vehicles become more complex. Mobile vehicles in battlefield lead to the requirement of firing during the motion instead of pausing each time the main battle tank engages a target. This demand can be achieved by weapon control system that minimize the tank hull movement effects on the barrel. Systems designed for this stabilization task are basically closed loop servo systems that control the angular position of the barrel by using feedback signals produced by a rate gyroscope mounted on the barrel (breech) to measure its angular velocity. Second-generation control systems contain an extra gyro which feeds the tanks movement forward in the system to make the turret more sensitive and rapid against the disturbance due to tanks movement. In this paper we use a disturbance observer that do not require measurements of muzzle angular velocity and rough terrain caused disturbance due to tank movement. Designed observer eliminate the requirement for measurements of near-perfect feedforward signal.

___

  • Referans 1 Ogorkiewicz R.M., Technology of tanks, Vol. 1, Janeâs Information Group Limited.
  • Referans 2 Purdy D.J., Comparison of balance and out of balance main battle tank armaments, Sound and Vibration, vol. 8, pp. 167-174, 1991.
  • Referans 3 Karayumak T., Modeling and stabilization control of a main battle tank, PhD Thesis, METU. , 2011.
  • Referans 4 Shukla, J., Modelling and Simulation of Main Battle Tank to Stabilize the Weapon Control System, SAE Technical Paper, 2018-28-0078, 2018.
  • Referans 5 Jakati A., Banerjee S., Jebaraj C., Development of dynamic models, simulating vibration control of tracked vehicle weapon dynamics, Defence Science Journal, vol. 67, no. 4, pp. 465-475, 2017.
  • Referans 6 Purdy D.J., Theoretical investigation into the modeling of a flexible beam with drive-line compliance, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, no. 216, pp. 813-829, 2002.
  • Referans 7 Kumar D.G., Tiwari P.Y., Marcopoli V., Kothare M.V., A study of a gun-turret assembly in an armored tank using model predictive control, Proceedings of American Control Conference, St. Louis, MO, pp. 4848-4853, 2009.
  • Referans 8 Xia Y., Dai L., Fu M., Li C., Wang C., Application of active disturbance rejection control in tank gun control system, Journal of the Franklin Institute, vol. 351, no. 4, pp. 2299-2314, 2014.
  • Referans 9 Schrijver E., Van Dijk J. Disturbance observers for rigid mechanical systems: Equivalence, stability, and design, ASME Journal of Dynamic Systems Measurement and Control, vol. 124, no. 4, pp. 539-548, 2002.0000-0001-8134-7046Referans 10 Sarıyıldız E., Ohnishi K., Stability and robustness of disturbance-observer-based motion control systems, IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 414-422, 2015.