Görünür Işık Altında İndigo Karminin Fotodegradasyonunu Artırmak için CaTiO3/g-C3N4 Heteroyapısının Sentezlenmesi

Bir seri grafit karbon nitrür (CN) modifiye CaTiO3 (CTO) kompoziti sentezlendi ve bu malzemeler indigo karmin (IC) fotodegradasyonunda kullanıldı. CTO/CN(III) heteroyapısı, görünür ışık ışıması altında en yüksek fotokatalitik IC bozunma performansı sergiledi. CTO/CN(III) fotokatalizörü varlığında IC’in bazunma hız sabiti CN’in 1.69 ve CTO’nun 10.50 katıdır. Bu iyi aktivitenin sebebi foto-uyarılmış taşıyıcıların daha kolay ayrılması olabilir. Katalizör miktarı, boyar maddenin giderimi üzerinde olumlu bir etki gösterirken; başlangıç boyar madde konsantrasyonu bu giderimi azaltmaktadır. Diğer yandan, bu katalizör asidik ortamda çok daha iyi performans göstermektedir. Radikal tutucu çalışmaları sonucunda, indigo karminin bozunması üzerinde süper oksit radikalinin büyük rol oynadığı gözlenmiştir. Ayrıca, bu deneylerin sonuçları baz alınarak IC’in bozunma reaksiyon mekanizması önerilmiştir. Ek olarak, bu optimum kompozit, iyon içeren su kütlelerinde, yani musluk ve içme sularında önemli performans göstermişlerdir. Bu çalışmada, kalsiyum bazlı perovskit ile modifiye edilmiş grafit karbon nitrür boya giderimi için umut verici ve kararlı bir fotokatalizör olarak sunulmuştur.

Construction of CaTiO3/g-C3N4 Heterostructure for Boosting Photodegradation of Indigo Carmine under Visible Light Illumination

A series of graphitic carbon nitride (CN) modified CaTiO3 (CTO) composites were synthesized and applied to photodegradation of indigo carmine (IC) The CTO/CN(III) heterostructure exhibited the highest photocatalytic performance for IC degradation under visible light irradiation. The degradation rate constants of IC by the optimal sample were 1.69 and 10.50 times that of CN and CTO, respectively. This could be attributed to the effective separation of photoexcited carriers easier. The photocatalyst dosage increased the removal efficiency, while the initial dye concentration negatively affected the IC degradation rate. Under acidic atmosphere, the catalyst showed superior degradation rate. Furthermore, the active substance (•O2 ¯) was the major active substance for IC photodegradation. On this basis, the possible photocatalytic reaction mechanism of CTO/CN(III) sample was proposed. In addition, the composite achieved considerable performance in ions-included water bodies, namely tap water and drinking water. This study provides a promising and stable photocatalyst as a graphitic carbon nitride modified with calcium-based perovskite for dye removal.

___

  • Referans 1 Ferdous, M., Khander, S., Sarker, F., Islam, A. (2020). Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater : A review. J. Mol. Liq., 318, 114061.
  • Referans 2 Flox, C., Ammar, S., Arias, C., Brillas, E. (2006). Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium, Appl. Catal,.67, 93–104.
  • Referans 3 Bafana, A., Devi, S., Chakrabarti, T. (2011). Azo dyes : past , present and the future. Environ. Rev., 370, 350–370.
  • Referans 4 Satyro, J.S.G.N.S., Dezotti, E.M.S.M. (2021). Investigation of mechanism and kinetics in the ­ TiO2 photocatalytic degradation of Indigo Carmine dye using radical scavengers. Int. J. Environ. Sci. Technol., 18, 163–172.
  • Referans 5 Rane, Y.N., Shende, D.A., Raghuwanshi, M.G., Koli, R.R., Gosavi, S.R. (2019). Optik Visible-light assisted CdO nanowires photocatalyst for toxic dye degradation studies. Opt. - Int. J. Light Electron Opt., 179, 535–544.
  • Referans 6 Girdhar, S., Maheshkumar, S., Patil, P., Do, G., Vinod, S. (2020). Multi ‑ doped ZnO Photocatalyst for Solar Induced Degradation of Indigo Carmine Dye and as an Antimicrobial Agent. J. Inorg. Organomet. Polym. Mater., 30, 1141–1152.
  • Referans 7 Passi, M., Pal, B. (2021). A review on CaTiO3 photocatalyst : Activity enhancement methods and photocatalytic applications. Powder Technol., 388, 274–304.
  • Referans 8 Shi, M., Rhimi, B., Zhang, K., Xu, J., Bahnemann, D.W., Wang, C. (2021). Visible light-driven novel Bi 2Ti 2O 7 / CaTiO3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. Chemosphere. 275, 130083.
  • Referans 9 Wang, Y., Niu, C., Whang, L., Wang, Y., Zhang, X. (2016). Synthesis of fern-like Ag/AgCl/CaTiO3 plasmonic photocatalysts and their enhanced visible-light photocatalytic properties. RSD Advan., 6, 47873–47882.
  • Referans 10 Chen, X., Di, L., Yang, H., Xian, T. (2019). A magnetically recoverable CaTiO3/reduced graphene oxide/NiFe2O4 nanocomposite for the dye degradation under simulated sunlight irradiation. J. Ceram. Soc. JAPAN., 127(4), 221–231.
  • Referans 11 Wang, X., Blechert, S., Antonietti, M. (2012). Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal., 2 (8), 1596–1606.
  • Referans 12 Han, J., liu, Y., Dai, F., Zhao, R., Wang, L. (2018). Fabrication of CdSe / CaTiO3 nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Appl. Surf. Sci., 459, 520–526.
  • Referans 13 Holliday, S., Stanishevsky, A. (2004). Crystallization of CaTiO3 by sol – gel synthesis and rapid thermal processing. Surf. Coat. Technol., 189, 741–744.
  • Referans 14 Chen, X., He, X., Yang, X., Wu, Z., Li, Y. (2020). Construction of novel 2D/1D g-C3N4/CaTiO3 heterojunction with face-to-face contact for boosting photodegradation of triphenylmethane dyes under simulated sunlight. J. Taiwan Inst. Chem. Eng., 107, 98–109.
  • Referans 15 Jiang, E., Song, N., Che, G., Liu, C., Dong, H. (2020). Construction of a Z-scheme MoS2 / CaTiO3 heterostructure by the morphology-controlled strategy towards enhancing photocatalytic activity. Chem. Eng. J., 399, 125721.
  • Referans 16 Khadhri, N., El, M., Saad, k., Moussaoui, Y. (2019). Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J. Environ. Chem. Eng. 7, 102775.
  • Referans 17 Akhavan, O., Abdolahad, M., Abdi, Y., Mohajerzadeh, S. (2009). Synthesis of titania / carbon nanotube heterojunction arrays for photoinactivation of E . coli in visible light irradiation. Carbon N. Y., 47, 3280–3287.
  • Referans 18 Kas, H. (2005). Aminofunctionalized acrylamide – maleic acid hydrogels : Adsorption of indigo carmine. Colloids Surf. A Physicochem. Eng., 266, 44–50.
  • Referans 19 Donneys-victoria, D., Machuca-martínez, F. (2020). Indigo carmine and chloride ions removal by electrocoagulation . Simultaneous production of brucite and layered double hydroxides. J. Water Process Eng., 33, 101106.