3D BASKI TEKNOLOJİSİ KULLANARAK YAPI ÜRETİMİNİN SON DÖNEM YENİLİKLERİNİN ARAŞTIRILMASI

İnşaat teknolojisi yapılan yatırımlar ile her geçen gün gelişmektedir. Yapılan büyük projeler yeni teknolojik araştırmaların önünü açmaktadır. İnsanlığın en önemli ihtiyaçlarından olan barınma ihtiyacını karşılamak için daha hızlı, daha pratik ve daha ekonomik üretim ihtiyacı insan sayısının artışı ile artmaktadır. İnşaat işlerinde bu ihtiyaçları karşılamak için birçok teknolojik gelişimden yararlanılmaktadır. Bu teknolojik gelişimlerinden bir tanesi de 3D baskı teknolojini kullanarak yapı üretimidir. 3D baskı teknolojisi birçok alanda kullanılabilirliği ile kendini kanıtlamış yenilikçi bir teknolojidir. İnşaat işlerinde kullanımı da son 10 yılda ortaya çıkmış, getirdiği avantajlar sayesinde gelecek yapı üretim tekniklerinden bir tanesi olacağı kesindir. Bu çalışma kapsamında 3D baskı teknolojisinin inşaat işlerinde kullanımının son dönem gelişimi araştırılmıştır. Yapılan yüksek katlı yapılar, ihtiyaç duyulan malzemeler için yapılmış çalışmalar, çelik köprü üretimi, uzay yapıları gibi konular başlıca ele alınmıştır. Ayrıca bu teknolojinin geleceği de tartışılmıştır.

___

  • [1] https://www.media.mit.edu/node/2277 Accessed 24 February 2018.
  • [2] http://www.dailymail.co.uk/sciencetech/article-2539857/How-3D-printing-help-colonise-moon-Contour-Crafting-technique-build-lunar-bases-astronauts-just-24-hours.html Accessed 24 February 2018.
  • [3] Khoshnevis, B. Automated construction using the contour crafting layered fabrication technique. Manufacturing Solutions 2000: 1-5.
  • [4] Khoshnevis B, Bukkapatnam S, Kwon H, Saito J. Experimental investigation of contour crafting using ceramics materials, Rapid Prototyping Journal 7 (1) 2001; 32 – 41.
  • [5] http://contourcrafting.com/ Accessed 24 February 2018.
  • [6] Khoshnevis B. Automated construction by contour crafting—related robotics and information technologies. Automation in construction 13.1 2004; 5-19.
  • [7] http://www.futuristspeaker.com/business-trends/disposable-houses/ Accessed 24 February 2018.
  • [8] Kazemian A, Yuan X, Cochran E, Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials, 2017; 145, 639-647.
  • [9] Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T. Mix design and fresh properties for high-performance printing concrete, Mater. Struct. 45 2012; 1221–1232.
  • [10] Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques, Mater. Struct. 49 (4) 2016; 1213–1220.
  • [11] Khoshnevis B, Yuan X, Zahiri B, Jing Z, Xia B. Construction by contour crafting using sulfur concrete with planetary applications, Rapid Prototyping J. 22 (5) 2016; 848–856.
  • [12] Babak Z, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction 83 2017; 212-221.
  • [13] Paul SC, Tay YWD, Panda B, Tan MJ. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018; 18(1), 311-319.
  • [14] Gosselin C, Duballet R, Roux P, Gaudillière N, Dirrenberger J, Morel P. Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders. Materials & Design, 2016; 100, 102-109.
  • [15] Toklu YC, Çerçevik AE, Şahinöz M. Otomatik Yapı Üretim Teknolojisinde Kullanılabilecek Malzemelerin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21.1 2017; 51-57.
  • [16] Asprone D, Auricchio F, Menna C, Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach. Construction and Building Materials. 2018; 165, 218-231.
  • [17] Hager I, Golonka A, Putanowicz R. 3D printing of buildings and building components as the future of sustainable construction?. Procedia Engineering. 2016; 151, 292-299.
  • [18] Duballet R, Baverel O, Dirrenberger J. Classification of building systems for concrete 3D printing. Automation in Construction 83 2017; 247-258.
  • [19] Bosscher P, Williams RL, Bryson LS, Castro-Lacouture, D. Cable-suspended robotic contour crafting system. Automation in construction, 2007; 17(1), 45-55.
  • [20] Zhang J, Khoshnevis B. Contour Crafting Process Plan Optimization Part I: Single-Nozzle Case. 2010.
  • [21] https://progrss.com/design/20160525/dubai-debuts-worlds-first-3d-printed-office/ Accessed 24 February 2018.
  • [22] http://www.ajanshaber.com/3d-yaziciyla-5-katli-bina-ve-villa-yaptilar-haberi/159097 Accessed 24 February 2018.
  • [23] http://vietnamnews.vn/life-style/405822/dutch-open-worlds-first-3d-printed-bridge.html#yO5dWdFKQm61l9ef.97 Accessed 24 February 2018.
  • [24] http://contourcrafting.com/building-construction/ Accessed 24 February 2018.
  • [25] http://contourcrafting.com/infrastructure-construction/ Accessed 24 February 2018.
  • [26] http://www.businessinsider.com/humans-could-be-living-on-the-moon-in-10-years-2016-3 Accessed 24 February 2018.
  • [27] https://news.usc.edu/97707/new-3-d-printing-process-could-lead-to-construction-on-mars-and-the-moon/ Accessed 24 February 2018.
  • [28] Toklu YC, Çerçevik AE, Kandemir SY, Yayli, MO. Production of lunar soil simulant in Turkey. In Recent Advances in Space Technologies (RAST), 2017 8th International Conference on (pp. 1-5). IEEE.
  • [29] https://www.archdaily.com/554739/nasa-tech-brief-awards-contour-crafting-s-automated-construction-methodology-top-honors/543429a0c07a8049f5000126-nasa-tech-brief-awards-contour-crafting-s-automated-construction-methodology-top-honors-photo Accessed 24 February 2018.
  • [30] https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/nasa-opens-2M-third-phase-of-3d-printed-habitat-competition Accessed 24 February 2018.
  • [31] http://3dpchallenge.tumblr.com Accessed 24 February 2018.