Determination of heat transfer coefficient and electromagnetic directional analysis of pomegranate seed

As Turkey uses about 25.7% of energy consumption in residential area and doing this with natural gas imported from the abroad, production of efficient insolation materials is important to decrease energy dependence and deficiency. Due to both waste minimisation and money saving, there are great efforts on developing new environment friendly insulation materials. In the scope of the current study, the heat transfer coefficient was acquired by applying the linear heat conduction coefficient measurement device to find the heat transfer coefficient of the pomegranate seed sample obtained from various processes for the production of insolation material. The sample also have been examined with a two-port vector network analyser to see electromagnetic property. At the end of the experiment, the heat transfer coefficient of the sample produced from pomegranate seeds was calculate as k = 0.6115 W/mK. Moreover, it has been found that the obtained sample performs better than the other insulation materials in terms of electromagnetic perspective. With this feature of the sample, it has been found that using as insolation material in the areas with the high electro-magnetic field can minimize the effect of the harmful electromagnetism in the place where it is applied.

___

  • 1. Tüccar, G. and Uludamar, E., Emission and engine performance analysis of a diesel engine using hydrogen enriched pomegranate seed oil biodiesel. International Journal of Hydrogen Energy, 2018. 43(38): p. 18014-18019.
  • 2. Hajjari, M., Tabatabaei, M., Aghbashlo, M., and Ghanavati, H., A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 2017. 72: p. 445-464.
  • 3. Bulut, U., and Muratoglu, G., Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, 2018. 123: p. 240-250.
  • 4. Koç, A., Yağlı, H., Koç, Y., and Uğurlu, İ., Dünyada ve Türkiye’de Enerji Görünümünün Genel Değerlendirilmesi. Engineer & the Machinery Magazine, 2018. 59(692): p. 86-114.
  • 5. Türkiye Doğalgaz Dağıtıcıları Birliği (GAZBİR), [cited 2019 09 February]; Available from: http://www.gazbir.org.tr/uploads/page/Dunya-ve-Turkiye-Enerji-Gorunumu.pdf
  • 6. Enerji Tabii ve Kaynaklar Bakanlığı. [cited 2019 09 February]; Available from: https://www.eigm.gov.tr/tr-TR/Denge-Tablolari/Denge-Tablolari.
  • 7. Bulut, U. and Muratoglu, G., Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, 2018. 123: p. 240-250.
  • 8. Türkiye Petrolleri (TP). [cited 2019 09 February]; Available from:http://www.tpao.gov.tr/tp5/docs/rapor/sektorrapor3105.pdf.
  • 9. Ervural, B. C., Zaim, S., Demirel, O. F., Aydin, Z. and Delen, D., An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renewable and Sustainable Energy Reviews, 2018. 82: p. 1538-1550.
  • 10. Bilgiç, H.H., Yağlı, H., Koç, A. and Yapıcı, A., Deneysel bir organik Rankine Çevriminde Yapay Sinir Ağları (YSA) Yardımıyla Güç Tahmini. Selçuk University Journal of Engineering, Science & Technology, 2016. 4(1): p. 7-17.
  • 11. Yağlı, H., Koç, Y., Koç, A., Görgülü, A. and Tandiroğlu, A., Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat. Energy, 2016. 111: p. 923-932.
  • 12. Yagli, H., Koc, A., Karakus, C. and Koc, Y. Comparison of toluene and cyclohexane as a working fluid of an organic Rankine cycle used for reheat furnace waste heat recovery. International Journal of Exergy, 2016. 19(3): p. 420-438.
  • 13. Yağlı, H., Karakuş, C., Koç, Y., Çevik, M., Uğurlu, İ. and Koç, A., Designing and exergetic analysis of a solar power tower system for Iskenderun region. International Journal of Exergy, 2019. 28(1): p. 96-112.
  • 14. Yılmaz, M., Türkiye’nin Enerji Potansiyeli ve Yenilenebilir Enerji Kaynaklarının Elektrik Enerjisi Üretimi Açısından Önemi, Ankara Üniversitesi Çevrebilimleri Derg., 2012. 4(2): p. 33–54.
  • 15. İner, G. and Çağlarer, E., Two countries at same parellel in solar energy productions: USA and Turkey. International Advanced Researches and Engineering Journal, 2018. 2(3): p. 325-329.
  • 16. Gürer, C., Atık Mermer Parçalarının Bitümlü Yol Kaplamalarında Değerlendirilmesi, 2005. Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Yapı Eğitimi Anabilim Dalı, Afyon.
  • 17. Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R.van. and Meybeck, A. [cited 2019 09 February]; Available from: http://www.fao.org/3/mb060e/mb060e00.pdf.
  • 18. Goula, A.M. and Lazarides, H.N., Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. Journal of Food Engineering, 2015. 167: p. 45-50.
  • 19. Dönmez, İ. and Dönmez, Ş., Ağaç kabuğunun yapısı ve yararlanma imkanları. SDÜ Orman Fakültesi Dergisi, 2013. 14: p. 156-162.
  • 20. Köse Ö., Koç Y., Yağlı H., Üstün İ., Kasap F., Öztürk N.A. and Koç A., Experimental Investigation of Thermal Coefficient of the Graphene Used Concrete. International Advanced Researches and Engineering Journal, (2019). (In Print).
  • 21. Binici, H., Gemci, R., Küçükönder A. and Solak H., Pamuk Atığı, Uçucu Kül ve Barit İle Üretilen Sunta Panellerin Isı, Ses ve Radyasyon Geçirgenliği Özellikleri. Yapı Teknolojileri Elektronik Dergisi, 2012. 8(1): p. 16-25.
  • 22. Kozak, M., Tekstil Atıklarının Yapı Malzemesi Olarak Kullanım Alanlarının Araştırılması. Yapı Teknolojileri Elektronik Dergisi, 2010. 6(1): p. 62-70.
  • 23. Fayaz, G., Goli, S.A.H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S. and Nicoli, M.C., Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT-Food Science and Technology, 2017. 86: p. 523-529.
  • 24. Talekar, S., Patti, A.F., Singh, R., Vijayraghavan, R. and Arora, A., From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Industrial Crops and Products, 2018. 112: p. 790-802.
  • 25. Hora, J.J., Maydew, E.R., Lansky, E.P. and Dwivedi, C., Chemo preventive effects of pomegranate seed oil on skin tumor development in CD1 mice. Journal of medicinal food, 2003. 6(3): p. 157-161.
  • 26. Tüccar, G. and Uludamar, E., Emission and engine performance analysis of a diesel engine using hydrogen enriched pomegranate seed oil biodiesel. International Journal of Hydrogen Energy, 2018. 43(38): p. 18014-18019.
  • 27. Mahmood, M. and Hosein, K.M., Determination and comparison of thermal conductivity of Iranian pomegranate varieties, in 18th National Congress on food technology: Mashhyad. p. 15-16.
  • 28. Mukama, M., Ambaw, A. and Opara, U.L., Thermal properties of whole and tissue parts of pomegranate (Punica granatum) fruit. Journal of Food Measurement and Characterization, 2018. 13(2): p. 901-910.
  • 29. Deneysan. [cited 2019 09 February]; Available from: http://deneysan.com/en/products/heat-transfer/ht-350-thermal-conductivity-detecting-training-set/221.
  • 30. Georgia State University. [cited 2019 09 February]; Available from: http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/thrcn.