Maricite $NaFePO_4$ Katot Malzemesinin Üretimi ve Elektrokimyasal Özellikleri

Enerji üretimi ve depolama teknolojilerinin kullanımı son yıllarda büyük bir önem kazanmıştır.Sodyum iyon piller (Na-iyon) alanındaki gelişmelere bakıldığında düşük maliyetlerinden dolayı lityumiyon (Li-iyon) pillere alternatif olarak yakın gelecekte ümit vadetmektedir. Na-iyon pilleri bu kadarcazip hale getiren başlıca nedenler lityum ile benzer kimyasal özelliklere sahip olması ve üretimmaliyetlerinin daha düşük olmasıdır. Bu çalışmada $NaFePO_4$ katot malzemesinin üretiminde ikikademeli ısıl işlem ile katı hal reaksiyon yöntemi uygulanmıştır. Üretilen malzemelerin fizikselkarekterizasyonları için XRD, SEM, FTIR kullanılmış, manyetik özellikleri ise χ-T analizleri ileincelenmiştir. Pillerin performansını ve elektrokimyasal özelliklerini araştırmak için üretilen katotmalzemeleri CR2032 düğme pil haline getirilerek döngüsel voltametri (CV) ve kapasite ölçümleriyapılmıştır. $NaFePO_4$ katot malzemesinin XRD analizlerinde safsızlık fazları gözlenmemiştir. Pil halinegetirilmiş katot materyallerinin 1,5-4,0 V aralığında 100 döngülük kapasite değeri ölçülmüş, ilk deşarjkapasitesinin 26,29 mAh $g^{-1}$ olduğu ve 100. döngü sonunda kapasite değerinin ilk döngüye oranla%10.99 arttığı gözlemlenmiştir.

Production and Electrochemical Properties of Maricite $NaFePO_4$ Cathode Material

The use of energy generation and storage technologies has gained great importance inrecent years. Considering the developments in the field of sodium ion batteries (Na-ion), because oftheir low cost, these materials will be an alternative to lithium ion (Li-ion) batteries in the near future.The important reasons that make Na-ion batteries so attractive are that they have similar chemicalproperties with lithium and their production costs are lower. In this study, $NaFePO_4$ cathode materialwas produced by applying two-steps heat treatments with solid state reaction method. For the structuralcharacterization of produced materials XRD, SEM, FTIR were used and their magnetic properties wereinvestigated by χ-T analyzes. Cyclic voltammetry (CV) and capacity measurements were made toinvestigate the battery performance and electrochemical properties of cathode materials. There was notobserved impurity phases in XRD analysis in the structure of the $NaFePO_4$ cathode material. Thecapacity of cathode materials has been measured for 100 cycles in the 1.5-4.0 V range. It was observedthat the initial discharge capacity of this battery was 26.29 mAh $g^{-1}$ and the capacity value increased%10.99 at the end of the $100^{th}$ cycle.

___

  • Altundağ S, Altin S, Yolun A, Canbay CA, 2020. $Na_0.67Mn_0.5Fe_0.5O_2$ Katot Malzemelerinin Üretimi, Yapısal ve Elektrokimyasal Özelliklerinin İncelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi. 32(2): 21-30.
  • Avdeev M, Mohamed Z, Ling DC, Lu J, Tamaru M, Yamada A, Barpanda P, 2013. Magnetic Structures of $NaFePO_4$ Maricite and Triphylite Polymorphs for Sodium-Ion Batteries. Inorganic Chemistry, 52(15): 8685-8693.
  • Ellis B L, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF, 2007. A multifunctional 3.5 V ironbased phosphate cathode for rechargeable batteries. Nature Materials, 6: 749-753.
  • Fernandez-Ropero AJ, Saurel D, Acebedo B, Rojo T, Casas-Cabanas M, 2014. Electrochemical characterization of $NaFePO_4$ as positive electrode in aqueous sodium-ion batteries. Journal of Power Sources, 291: 40e45 .
  • He M, Kravchyk K, Walter M, Kovalenko M. V, 2014. Monodisperse Antimony Nanocrystals for HighRate Li-ion and Na- ion Battery Anodes: Nano versus Bulk. Nano Letters, 14: 1255−1262.
  • Heubner C, Heiden S, Schneider M, Michaelis A, 2017. Electrochimica Acta In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries. Electrochimica Acta, 233:78–84.
  • Hwang J, Matsumoto K, Orikasa Y, Katayama M, InadaY, NohiraT, Hagiwara R, 2018. Crystalline maricite $NaFePO_4$ as a positive electrode material for sodium secondary batteries operating at intermediate temperature. Journal of Power Sources, 377: 80–86.
  • Hwang J Y, Myung S T, Sun Y K, 2017. Sodium-ion batteries: Present and Future. International Chemical Society Reviews, 46(12): 3529–3614..
  • Jana S, Lingannan G, Ishtiyak M, Panigrahi G, Sonachalam A, Prakash J, 2020. Syntheses , crystal structures , optical , Raman spectroscopy , and magnetic properties of two polymorphs of $NaMnPO_4$. Materials Research Bulletin, 126: 110835
  • Jin T, Li H, Zhu K, Wang P. F, Liu P, Jiao L, 2020. Polyanion-type cathode materials for sodium-ion batteries. Chemical Society Reviews, 49(8): 2342–2377.
  • Kapaev R R, Chekannikov A A, Novikova S A, Kulova T L, Skundin M, Yaroslavtsev A B, 2017. Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries. Italian Oral Surgery, 27(3): 263–264.
  • Kim J, Seo D, Kim H, Park I, Yoo J, 2015. Unexpected discovery of low-cost maricite $NaFePO_4$ as a high-performance electrode for Na-ion batteries, Energy Environmental Science, 8: 540-545.
  • Kosova N V, Podugolnikov V R, Devyatkina E T, Slobodyuk A B, 2014. Structure and electrochemistry of $NaFePO_4$ and $Na_2FePO_4F$ cathode materials prepared via mechanochemical route. Materials Research Bulletin, 60: 849–857.
  • Li C, Miao X, Chu W, Wu P, Tong D. G, 2015. Hollow amorphous $NaFePO_4$ nanospheres as a highcapacity and high-rate cathode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 3: 8265–8271.
  • Liu Y, Zhang N, Wang F, Liu X, Jiao L, Fan L, 2018. Approaching the Downsizing Limit of Maricite $NaFePO_4$toward High-Performance Cathode for Sodium-Ion Batteries. Advanced Functional Materials, 28(30): 1801917
  • Masias A, Marcicki J, Paxton W A, 2021. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Letters, 6(2): 621-630.
  • Massot L, Chamelot P, Cassayre L, Taxil P, 2009. Electrochemical study of the Eu(III)/Eu(II) system in molten fluoride media. Electrochemica Acta, 54(26): 6361-6366.
  • Mukherjee S, Bin Mujib S, Soares D, Singh G, 2019. Electrode Materials for High-Performance SodiumIon Batteries. Materials, 12(12): 1952.
  • Murugesan C, Lochab S, Senthilkumar B, Barpanda P, 2018. Earth-Abundant Alkali Iron Phosphates ( $AFePO_4$ ) as Efficient Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution, ChemCatChem 10: 1122 – 1127.
  • Oh S M, Myung S T, Hassoun J, Scrosati B, Sun Y K, 2012. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochemistry Communications, 22(1): 149–152.
  • Priyanka V, Subadevi R, Sivakumar M, 2017. Synthesis And Structural Analysis of $NaFePO_4$ Nanocomposite For Sodium Ion Batteries. International Research Journal of Engineering and Technology, 4(9): 3–6.
  • Rahman M, Sultana I, Mateti S, Liu J, Sharma N, Chen Y, 2017. Maricite $NaFePO_4$/C/graphene: a novel hybrid cathode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 5: 16616–16621.
  • Tang W, Song X, Du Y, Peng C, Lin M, Xi S, Tian B, Zheng J, Wu Y, Pan F, Loh K. P, 2016. Highperformance $NaFePO_4$ formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 4(13): 4882–4892.
  • Trottier J, Hovington P, Brochu F, Rodrigues I, Zaghib K, Mauger A, Julien C. M, 2011. $NaFePO_4$ Olivine as Electrode Materials for Electrochemical Cells. ECS Transactions, 35(34), 123–128.
  • Wang D, Wu Y, Lv J, Wang R, Xu S, 2019. Carbon encapsulated maricite $NaFePO_4$ nanoparticles as cathode material for sodium-ion batteries. Colloids and Surfaces A, 583: 123957.
  • Wang J, Sun X, 2015. Olivine LiFePO4: The remaining challenges for future energy storage. International Energy and Environmental Science 8(4): 1110–1138.
  • Zhao L, Zhou D, Huang W, Kang X, Shi Q, Deng Z, Yan X, Yu Y, 2017. Electrochemical performances of maricite $NaFePO_4$/C as cathode material for sodium-ion and lithium-ion batteries. International Journal of Electrochemical Science, 12(4): 3153–3165.