Düşük Enerji Aralığında Bazı Bitkilerin Radyasyon Soğurma Parametrelerinin Belirlenmesi

Sunulan bu çalışmada, XRF spektrometresi kullanılarak dört aromatik bitki taksonunun (Teucrium chamaedrys L. subsp. sinuatum, Astragalus kurdicus var. muschianus, Ranunculus arvensis ve Juglans regia) bazı soğurma parametreleri (kütle azaltma katsayıları, molar yok-olma katsayıları, etkin atom numaraları ve etkin elektron yoğunlukları) 13.92 ile 59.54 keV foton enerji aralıklarında ölçülmüştür. Ölçümler Si(Li) detektör ve 241Am nokta kaynağı kullanılarak yapılmıştır. Si(Li) detektör, 12.5 mm2 aktif alana, 0.008 mm kalınlığında berilyum pencereye ve 5.9 keV'de 160 eV çözünürlüğe sahiptir. İlk üç bitkinin toprak üstü kısımları incelenirken, J. regia'nın yaprak kısmı incelenmiştir. Elde edilen deneysel sonuçlar WinXCOM bilgisayar programı kullanılarak hesaplanan soğurma parametreleri teorik değerleri ile karşılaştırılmıştır. Deneysel sonuçların hesaplanan teorik sonuçlar ile iyi bir uyum gösterdiği gözlemlenmiştir. T. chamaedrys L. subsp. sinuatum bitkisinin toprak üstü kısmında soğurma parametrelerinin en büyük değerler aldığı ve J. regia bitkisinin yaprak kısmında bu parametrelerin en küçük değerler aldıkları gözlemlenmiştir.

Determination of Radiation Absorption Parameters of Some Plants in The Low Energy Range

In the present study, the some radiation absorption parameters (mass attenuation coefficients, molar extinction coefficients, effective atomic numbers and effective electron densities) of four aromatic plant taxon's (Teucrium chamaedrys L. subsp. sinuatum, Astragalus kurdicus var. muschianus, Ranunculus arvensis and Juglans regia) have been measured at 13.92 and 59.54 keV photon energy ranges using XRF spectrometry. Measurements were made using a Si (Li) detector and 241Am spot source. The Si (Li) detector has an active area of 12.5 mm2, a 0.008 mm thick beryllium window and a resolution of 160 eV at 5.9 keV. While the aerial parts of the first three plants were investigated, the leaf part of the J. regia was investigated. The obtained experimental results were compared with the theoretically calculated some absorption parameters using the WinXCOM computer program. It is observed that the experimental results are in good agreement with those calculated theoretically values. It has been observed that the absorption parameters have the highest values in the above ground part of the T. chamaedrys L. subsp. sinuatum plant and that these parameters have the lowest values in the leaf part of the J. regia plant.

___

  • Akdemir F, Turhan MF, Akman F, Geçibesler İH, Kaçal MR, Durak R, 2019. Measurement of Mass Attenuation Coefficients and Molar Extinction Coefficients of Alyssum pateri subsp. Prostratum. Journal of the Institute of Science and Technology, 9(1): 339-346.
  • Akman F, Durak R, Turhan MF, Kaçal MR, 2015. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes, 101: 107-113.
  • Akman F, Durak R, Kacal MR, Bezgin F, 2016. Study of absorption parameters around the K edge for selected compounds of Gd. X-ray Spectrometry, 45: 103-110.
  • Akman F, Kaçal MR, Akman F, Soylu MS, 2017. Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Canadian Journal of Physics, 95: 1005-1011.
  • Almeida IF, Fernandes E, Lima JL, Costa PC, Bahia MF, 2008. Walnut (Juglans regia) leaf extracts are strong scavengers of pro-oxidant reactive species. Food Chemistry, 106(3):1014-1020.
  • Chaudhari LM, 2013. Study of attenuation coefficients of leaves of Asoka plant by using Cs and Tl sources. Research Journal of Physical Sciences, 1(2):1-8.
  • Gerward L, Guilbert N, Jensen KB, Levring H, 2001. X-ray absorption in matter, reengineering XCOM. Radiation Physics and Chemistry, 60:23-24.
  • Ghosh S, Das MK, 2014. Attenuation coefficients and absorbed gamma radiation energy of different varieties of potato, mango and prawn at different storage time and physiological condition. Food Chemistry, 145:694-700.
  • Hine GJ, 1952. The effective atomic numbers of materials for various gamma ray processes. Physical Review, 85: 725.
  • Morabad RB, Kerur BR, 2010. Mass attenuation coefficients of X-rays in different medicinal plants. Applied Radiation and Isotopes, 68:271-274.
  • Sayhan MB, Gokdemir MT, Guloglu C, Orak M, Ustundag M, 2009. A burn case associated with Ranunculus arvensis. The Anatolian Journal of Clinical Investigation, 3(1): 85-87.
  • Sayyed MI, Akman F, Geçibesler İH, Tekin HO, 2018. Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. NUCL SCI TECH (2018) 29:144.
  • Teerthe SS, Kerur BR, 2016. X-ray mass attenuation coefficient of medicinal plant using different energies 32.890 keV to 13.596 keV. Materials Today: Proceedings, 3:3925-3929.
  • Trunova V, Sidorina A, Kriventsov V, 2015. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12 keV. Applied Radiation and Isotopes, 95:48-52.
  • Ulubelen A, Topcu G, Sönmez U, 2000. Chemical and biological evaluation of genus Teucrium. Studies in Natural Products Chemistry (Bioactive Natural Products Part D) 23:591-648.
  • Yesilada E, Bedir E, Çalış İ, Takaishi Y, Ohmoto Y, 2005. Effects of triterpene saponins from Astragalus species on in vitro cytokine release. Journal of Ethnopharmacology, 96(1-2):71-77.