Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı

Bu çalışmada, atık suların mikroorganizmalardan arıtımı için alternatif olan ve son zamanlarda dikkat çekenyöntemler kullanılmıştır. Bu amaçla özellikle atık sularda yer alan Salmonella typhi RSHMB 96051 bakterisiningiderimi sonoliz, fotokataliz ve sonofotokataliz yöntemleri kullanılarak incelenmiştir. Yapılan denemelerde farklıışık şiddetlerinin bakteri giderimindeki etkileri bu prosesler üzerinde çalışılmıştır. Denemelerde ultrases enerjisi veultraviyole ışınlar hem ayrı ayrı hem de eşzamanlı olarak birlikte kullanımlarıyla yapılmıştır. Bu prosesler sırasıylasonoliz, fotokataliz ve sonofotokataliz prosesleridir. Elde edilen sonuçlar karşılaştırıldığında her üç tekniğin debakteri gideriminde oldukça etkili olduğu ancak fotokataliz ve sonolizin birlikte kullanılmasıyla olan etkinin enfazla olduğu tespit edilmiş ve bu yöntemle %100 giderime yaklaşık 6 dakika gibi kısa bir sürede ulaşıldığı tayinedilmiştir.  

The Usage of Sonophotocatalytic Process for the Disinfection of Bacteria

In this study, some of the alternative methods have been utilized for the disinfection ofmicroorganisms in the waste water. The disinfection of Salmonella typhi RSHMB 96051 bacteria in the waste waterwas investigated using the sonolysis, photocatalysis and sonophotocatalysis processes. In experiments, the effectsof different light intentities have been investigated with the processes mentioned above. The ultrasound energy andultraviolet light were used seperately and together as well. These processes are called sonolysis, photocatalysis andsonophotocatalysis respectively. The results yielded that all the processes were quite effective. The simultaneoususe of sonolysis and photocatalysis yielded the best results. 100% disinfection ratio was obtained within 6 minutesin this study  

___

  • Ahmeda A Y, Kandiel T A, Ivanova I, Bahnemann D, 2014. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Appl. Surf. Sci., 319: 44-49.
  • Barrett M, Fitzhenry K, O’Flaherty V, Dore W, Keaveney S, Cormican M, Rowan N, Clifford E, 2016. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities. Science of the Total Environment, Article in Press.
  • Bella S W Ho, Tam T-Y, 2000. Rapıd Enumeratıon of Salmonella in Environmental Waters and Wastewater. Water Research, 34: 2397-2399.
  • Behnajady M A, Modirshahla N, Hamzavi R, 2006. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B, 133: 226-232.
  • Brooks J P, Adeli A, McLaughlin M R, 2014. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Research, 57: 96-103.
  • Cabral J P S, 2010. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health, 7: 3657–3703.
  • Crum L A, Mason T J, Reisse J L, Suslick K S, 1999. Sonochemistry and Sonoluminescence, Kluw. Aca, Dordreicht, 363 p.
  • Daneshvar N, Rabbani M, Modirshahla N, Behnajady M A, 2004. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO 2 process. J. Photochem. Photobiol A: Chemistry 168: 39-45.
  • Ertugay N, Acar F N, 2014. The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidationin the presence of ZnO nanocatalyst. Appl. Surf. Sci. 318: 121-126.
  • Farmer J, Brenner F W H, 2003. The Genus Vibrio and Phototobacterium. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. 3th ed.; M. Dworkin, S. Falkow, E. Rosenberg, Eds., Spr.-Verlag, NY, USA 3.14p.
  • Fuhrimann S, Pham-Duc P, Cissé G, Tram N T, Ha H T, Dung D T, Ngoc P, Nguyen-Viet H, Vuong T A, Utzinger J, Schindler C, Winkler M S, 2016. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers. Science of the Total Environment, Article in Press.
  • Giannakis S, López M I P, Spuhler D, Pérez J A S, Ibá˜nez P F, Pulgarin C, 2016. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 198: 431–446.
  • Gogate P R, Pandit A B, 2004. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research 8: 553–597.
  • Guo M Y, Ching N A M, Liu F, Djuriˇsi ´c A B, Chan W K, 2011. Appl. Catal. B-Environ. 107: 150.
  • http://www.mmo.org.tr/resimler/dosya_ekler/7d16d00201083a2_ ek.pdf?dergi=142 (Erişim tarihi: 26.06.2016.
  • Huang Z, Maness P-C, Blake D M, Wolfrum,E J, Smolinski S L, Jacoby W A, 2000. Bactericidal mode of titanium dioxide photocatalysis. J. Photoch Photobio A, 130: 163–170.
  • Ince N H, Tezcanli G, Belen R, Apikyan I G, 2001. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B: Environ. 29: 167-176.
  • Isaev A B, Magomedova G A, Zakargaeva N A, Adamadzieva N K, 2011. Influence of oxygen pressure on the photocatalytic oxidation of the azo dye Chrome Yellow with TiO2 as the catalyst. Kinet. Catal., 52: 197.
  • Konstantinou I K, Albanis T A, 2004. TiO2 –assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanic investigations. Appl. Catal. B: Environ. 49: 1-14.
  • Krzyzanowski Jr F, Lauretto M S, Nardocci A C, Sato M I Z, Razzolini M T P, 2016. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion. Science of the Total Environment, 568: 66-74.
  • Lonigro A, Rubino P, Lacasella V, Montemurro N, 2016. Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters. Agricultural Water Management, Article in press.
  • Lopez-Velasco G, Tomas-Callejas A, Sbodio A O, Pham X, Wei P, Diribsa D, Suslow T V, 2015. Factors affecting cell population density during enrichment and subsequent molecular detection of Salmonella enterica and Escherichia coli O157:H7 on lettuce contaminated during feld production. Food Control, 54: 165- 175.
  • Masarikova M, Manga I, Cizek A, Dolejska M, Oravcova V, Myskova P, Karpiskova R, Literak I, 2016. Salmonella enterica resistant to antimicrobials in wastewater effluents and black-headed gulls in the Czech Republic, 2012. Science of the Total Environment 542: 102–107.
  • Monteagudo J M, Duran A, Martin I S, Garcia S, 2014. Ultrasound-assisted homogeneous photocatalytic degradation of Reactive Blue 4 in aqueous solutionAppl. Catal. B., 152: 59-67.
  • Nissinen T K, Miettinen I T, Martikainen P J, Vartiainen T, 2002. Disinfection by-products in Finnish drinking waters. Chemosphere, 48: 9–20.
  • Pigeot-Rémya S, Simonet F, Errazuriz-Cerda E, Lazzaroni J C, Atlane D, Guillard C, 2011. Photocatalysis and disinfection of water: Identifcation of potential bacterial targets. Applied Catalysis B: Environmental 104: 390–398.
  • Rook J J, 1974. Formation of haloforms during chlorination of natural waters. Water Treat. Exam., 23: 234.
  • Sallach J B, Zhang Y, Hodges L, Snow D, Li X, Bartelt-Hunt S, 2015.
  • Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation. Environmental Pollution, 197: 269-277.
  • Tanga C, Bai H, Liua L, Zanc X, Gaoa P, Suna D D, Yand W, 2016. A green approach assembled multifunctional Ag/AgBr/TNF membrane for clean water production & disinfection of bacteria through utilizing visible light. Applied Catalysis B: Environmental, 196: 57–67.
  • Tezcanli G, Ince N H, 2004. Individual and combined effects of ultrasound, ozone and UV-irradiation: a case study with textile dyes. Ultrasonics, 42: 603-609.
  • Volkova A V, Nemeth S, Skorb E V, Andreeva D V, 2015. Highly effcient photodegradation of organic pollutants assisted by sonoluminescence. Photochem. Photobiol., 91: 59-67.
  • Wang W, Huang G, Yu J C, Wong P K, 2015. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. Journal of Environmental Sciences, 34: 232 – 247.
  • Wu C H, 2008. Effects of sonication on decolorization of C.I. Reactive Red 198 in UV/ZnO system. J. Hazard. Mater. 153: 1254-1261.
  • Yetim T, Tekin T, 2016. A Kinetic Study on Photocatalytic and Sonophotocatalytic Degradation of Textile Dyes. Periodica Polytechnica Chemical Engineering, Online First: 8535.
  • Zyouda A, Dwikat M , Al-Shakhshir S , Ateeq S, Shteiwi J, Zu’bi A, Helal M H S, Campet G, Park D H, Kwon H, Kim T W, Kharoof M, Shawahna R, Hilal S H, 2016. Natural dye-sensitized ZnO nano-particles as photo-catalysts in complete degradation of E. coli bacteria and their organic content. Journal of Photochemistry and Photobiology A: Chemistry, 328: 207–216
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -